=i DL

Getting Started

with IDL

A

RESEARCH
SYSTEMS

A Kodak Company

IDL Version 5.6
October, 2002 Edition

Copyright © Research Systems, Inc.

All Rights Reserved

1002IDL56GS

Restricted Rights Notice

The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. Research Sys-
tems, Inc., reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty

Research Systems, Inc. makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of the soft-
ware, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages suffered
by the Licensee or any others resulting from use of the IDL or ION software packages or their doc-
umentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, Research Systems, Inc. grants you a limited, nontransfer-
able license to reproduce this particular document provided such copies are for your use only and
are not sold or distributed to third parties. All such copies must contain the title page and this
notice page in their entirety.

Acknowledgments

IDL® is aregistered trademark and ION™, |ON Script™, ION Java™, are trademarks of Research Systems Inc., registered in the
United States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is atrademark of Numerica Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ jsatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999, 2000, 2001, 2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library

Copyright © 1999

National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1996 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and A pplied Research Corporation

This software is based in part on the work of the Independent JPEG Group.
Portions of this software are copyrighted by INTERSOLYV, Inc., 1991-1998.

Use of this software for providing LZW capability for any purpose is not authorized unless user first entersinto alicense agreement
with Unisysunder U.S. Patent No. 4,558,302 and foreign counterparts. For information concerning licensing, please contact: Unisys
Corporation, Welch Licensing Department - C1SW19, Township Line & Union Meeting Roads, P.O. Box 500, Blue Bell, PA 19424,

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rightsreserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)
IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.
Other trademarks and registered trademarks are the property of the respective trademark holders.

Ccontents

Chapter 1:

The POWET OF IDL eueeiiiiiiiiie e e e e e e s 9
USING thIS IMANUEL ...t et s e e e e see e 12
Chapter 2:
The IDL Development ENVIrONMENteeiiiiiiiieiiieiieeeeeeeeiee e 13
IDL’ s Development ENVIFONMENToooiiiiiie ettt s 14
ST U oo 1 RS 15
THE IDL INEEITACES ...eiie ettt ettt et ettt bt sttt b s enae e e e e nree 16
The IDL Development ENVironment LayOULccoveeceerienneennienie e s 17
(0 1011 (] oo N 1/ USSP 20
More Information 0N the IDLDE ...t 21
Chapter 3:
Reading and Writing Datacouuuiiiiiiiiieiee e 23
IDL and Reading and Writing Dataccccceereiuieiiereeeeriie e s se e 24

Getting Started with IDL 3

DL SUPPOIEA FOMMALS ...cveiviuieierieetiieiie ettt e e e 25
IMBGE FOMMALSeeieiiie ettt ettt n e en e e e s 25
SCIENtifiC Daa FOMMALSccveuerierieieeieri ettt 25
OLNEN FOMMELS ...ttt ettt e es e sn e b e e 25

Importing Datafrom an ASCI File ..o e 26

Reading and Writing BiNary Dalacccoureruereeiniine e 31

SAVING B TEMPIALE ..ottt sr e et er et ene e e e ene s 35

Reading and Writing IMAQEScoeieiiieeiree ettt st s 36

More Information on IDL and INPUE/OULPULcceeuererieneeeiriienecieieee e e 38

Chapter 4:

2-D PlOTEING ottt 39

IDL @nd 2-D PIOTING ..eveeeeereiieiere ettt st e e e e 40

SIMPIEPLOMING .ttt et er e en e neene s 41
USING OPLOT .ttt ettt st st et e e bttt b ettt 42
PrNGNG @ PLOL ..o e et e 43

PlOttiNg With Dal@ SELSccueiviieiee ettt e e e 44

Other PIOtting CapabilitieScc.eoeeireeeseeie et 45

USING LIVE_PLOT .ottt sttt e sttt ettt b e 46

More Information 0N 2-D PlOINGccueveiieiiienece et e 48

Chapter 5:

SIgNAl PrOCESSING coiiiiiiiiiiiiiiee e 49

IDL and Signal PrOCESSINGcvererueeririeienieserresieseeeeresiesee e st e se e seses e sree s ene e nees 50

Creating @DaIA SELcoveveiirieie et e e 51

Signal Processing With SMOOTHcooiiiiiiie e 54

Frequency DOmain FIltEITNGccoceeiiiieieci e e 55

Displaying the RESUILScoeiiiiieiieieree ettt s e 58

More Information 0N SigNal PrOCESSINGcovereriiierirerieneeiires e e 60

Chapter 6:

IMAGE PrOCESSING ..oiiieie e e e 61

IDL and IMage PrOCESSINGccuervreeririeieniesireee sttt see et e e ses e e e s ene e neee 62

REBAING 8N IMAGE ..ot et e e 63

Displaying @N IMBOEooveiriiieieee ettt st s en e e e e 64

RESIZING 8N TMAJE ...ttt et e e e e 66

Resizing & GraphiCS WINAOWcc.eiuiiiieiriie sttt s 67

Contents Getting Started with IDL

Contrast ENNANCEMENTcooiiiiiiie it e 68
THrESNOIAING ..ot e e s e 68
SCANG PIXEl VAIUBS ...ttt e e 71

Smoothing and SharPENiNGoooeriieire e e e 74
UNSNAP M@SKINGcveieieeiireeie ettt s e es b e 75
Sharpening Images with DIifferentiationccccoeoereneneniece s 76

Other Image ManipUIELIONScoeieiieireee et e s 78
ROLAIiNG @N TMBOE ..e.eeeeieceiee ettt e es e e ene e 79

EXEraCting ProfilS ...t et e s 80

USING LIVE_IMAGE ...ttt sttt s e e e e 81

More Information 0N IMage PrOCESSINGcoeeeuereriereeirrire st se e ens 82

Chapter 7:

Surface and Contour PIOtHINGeeviiiiiiiiiii e 83

IDL and Surface and COoNtoUr PIOLINGcceireeireriereeier et 84

Reading @ Dataset t0 PIOtccoiviiiieeieie e e e s 85

DiSplaying @SUIMACEcc.eiueeiiieiireee ettt e et e enn 86

Displaying aShaded SUIaCEccoeiiiriiie e s 88

DiSPlaying @CONIOUNc..eiueuirietireeiere ettt st s e et eb e sre e e enen e enn 91

PlOtting With SHOWS ...t e e e e s 96

Using LIVE_SURFACE fOF PIOING ...cceeveiieiieeeineie e 97

More Information 0N 3-D PlOINGooveiriiieiieeiee e s 98

Chapter 8:

VOIUME VISUAIZALION ...evviiiiiiiiiiiiiiieeee e 99

IDL and VOlUME ViSUBIIZAIONc.cveiceiiiiie ettt e 100

Reading in a Dataset for VisualiZationcocceeieienieinene e 101

3-D TranSfOrMELTIONSc.eoueiueeeiiiinie ettt sr e s e e sr e e e enn 102

VisUalizZing @n 1SO-SUIMACEc.eiiiieiecieiie sttt e 104

Making SlicesSWith the IDL SHCEN ..ot e 106

Displaying aSurface With the SIICENccoviiiiiii e 108
Dismiss the Slicer and Volume WiNOWSccereirenennieeincie e 109

More Information on Volume VisualiZationccccoeerereneeieeine s 110

Chapter 9:
1Y E= T o] o1 g o IR PP TRTPTPO 111

IDL @nd MBPPING .veieieeeiiireie ettt e s e e st ebe e e e e nenenne s 112

Getting Started with IDL Contents

Drawing Map PrOJECLIONSooiiiiiriiieeeeine et e e e 113
Drawing an OrthographiC ProjECIIONccuverereiierire e 115
Plotting @ Portion Of the GIODE ... e e 116
PlOtting Data 0N MBScoueieiieierie ettt e er e e eae e 117
Reading Latitudes and LONGITUAESccceirieriereceeiine et s 119
Plotting CONtOUrS OVEr MBScoueeuiieeieieiireeie sttt ses e e es e e es 120
Warping IMageS to MaPSccecueuereriirieieieeie et sr e se e e sr e s 122
More INformation 0N MapPINGccerererieiriee ettt e e e es 127
Chapter 10:

Plotting Irregularly-Gridded Datacccceeeeiiiiiiiiiiiieieeeeeeiiees 129
IDL and Plotting Irregularly-Gridded Dataccccoevereneeiirieneneeieene e 130
Creating @DEIASELcoeoueuireriie ettt e e 131
The TRIANGULATE ProCEUUNEcc.ooviiieeieieiiesir et s 133
Plotting the ReSUltS With TRIGRIDccciiiieiieeie e e 135
More INformation 0N GriddinNgccocouerieirere e e e 137
Chapter 11:

ANTMALION o e e e e e e e e e e e bbb 139
IDL @nd ANIMELTON ..ottt ettt s e e eb e e s eae e nes 140
ANiMating a SerieS Of IMBGESccoeiueiriieire e e e 141
Displaying an Animation as aWire Meshcccceiririiciniene e 143
Animation With XINTERANIMATE ..ottt e 146
Cleaning Up the ANimation WiNOWScoceiriemreerineeieeee e 148
More Information 0N ANIMELIONccueiieirirere e e 149

Chapter 12:

Programming in IDLooooiiiiiiii et 151
IDL and ProgramiMingccoeoeoeeeeneieneesensese s ssesie e e s e e essesesseseesesessesseseessenes 152
Programming Capabilitiesin the IDLDEccooiiiiieneeiriee e 153
BUITT-TN BITOr .t e e 153
TYPES OF IDL PrOGIramS ..c..ooiuieiiieieiie ettt e ettt s e 153
COMPOUNT SEBEEMENTSc.veiveeeririeieseeiier ettt e s e sr e es e ebe e s 154
Conditional SEELEMENTScoveeeeireie et e e e s 154
L OOP SEALEMENES ...o.eeiee ettt e e nn e nre e 154
JUMP SEEEEMENTS ...t e e e e e e e r e nr e e 154
Executing a Simple IDL EXample Program ... e s 155

Contents Getting Started with IDL

Saving, Compiling and RUNNING YOUr Programcccocceereirieneneeienese e 156
Debugging TOOISIN IDLoiieiiciiie ettt e et s e 158
BrEakPOINESeoeieiieiie ettt e e e e 158
Variable WatCh WINAOWccoiiiiire s e s 158
The IDL COde Profil€fcciiieeeeee st e s 159
USING IDL PrOJECES ..ecveaeceieie ettt sttt e et s nene e 160
Accessto al Filesin Your APpliCatioNccoeieierneneeneire e 160
Working With FileSin Y OuUr ProjECtcoceviieeneiieire e 161
Compiling and Running Y our APPliCatiONccccouerrereeneire e 161
Building DiStriDULIONSc.coueiieieeiiesire et e 161
EXporting Y our APPIICALIONSc.ooiuiriirieiire et e 161
More Information on IDL Programmingccccceeeeereimene s e 162
Chapter 13:
Manipulating Datacccocoiiiie e 163
IDL and Manipulating D@cccouereeerienereeeeeisee et eaenenie s 164
DL ATTAY ROULINESoieitieieiiee ettt sttt e sn e e et b e sa e et e esnenenne e 165
Array Creation ROULINEScocoiiiiiirie it s 165
Array Manipulation ROULINESccccoiirieireieieeie e e 166
Array and Image Processing ROULINESccccvrirereeeniene e e 166
Array Processing Capabilitiesccooeiiiienneiieicie e e 168
More Information on Manipulating Dataccceeverereerieine s 171
Chapter 14:
Using the IDL GUIBUIIAErccoceiiiiiiiieieeeeee e 173
What iSthe IDL GUIBUITEI? ..ottt st e 174
USING the IDL GUIBUITTEroviiiiieeeeieee e e 174
IDL GUIBUIIAEN TOOIS ...ttt et 176
Using the IDL GUIBUIIEr TOOIDAccucvrieiireeieieee et e 176
Creating an Example APPIICALTIONccuciririireeiee e e s 177
Defining Menus for the TOp-Level BaSecccociveerene e 177
Running the Application in TESt MOEccoeiriieniie i 181
Generating the IDL COOEcoueieeiiiee sttt e e 181
Handling the Open File EVENE ... e 182
Handling the EXIit EVENLcooiiieee et e 183
Handling the Load Color Table EVENcccvieiiiiiiiee e 184
Handling the SMOOth EVENL ..o e 184

Getting Started with IDL Contents

Compiling and Running the Example Applicationcccoeeeireneneeniece s 185
WIOGEL TYPES ettt sttt ettt s e e eh e s en e nn s 187
WidgEt PrOPEITIES ...ttt e e 188
More Information on the IDL GUIBUITTEYccooiririiiieeiree e 189
Chapter 15:
Where to GO From HEIE ... 191
Learning More aDOUL IDLccooiiiiirieieeeeire ettt e e 192
IDL DOCUMENLALION SEL ..ottt sr et e e s e 192
ONIINEMANUEIS ...t sttt s st enaeneesee s 194
ONIINEHEID <. e e 195
IDL Demo Applications and EXAMPIEScccoociriiiiinecine e 196
CONACHING RSI ... et e s er et en e e 197
N [0 1= TS 197
010 S 197
= SRRSO 197
BT <o e bbb e e 197
WOTTA WIEWED ...ttt e e 197
IO EX e 199

Contents Getting Started with IDL

Chapter 1.

The Power of IDL

IDL, the Interactive Data Language, is the ideal software for data analysis,
visualization, and cross-platform application development. IDL integrates a
powerful, array-oriented language with numerous mathematical analysis and
graphical display techniques, thus giving you incredible flexibility. A few lines of
IDL can do the job of hundreds of lines of C or Fortran, without losing flexibility or
performance. A fourth-generation language, I DL isradically more compact than C or
Fortran. Using I DL, tasks that require days or weeks of programming with traditional
languages can be accomplished in hours. Users can explore datainteractively using
IDL commands and then create compl ete applications by writing IDL programs.

Getting Started with IDL 9

10

Chapter 1: The Power of IDL

Create Datain IDL - Use IDL to
create data, using a complete,
structured language that can be used
interactively and on sophisticated
functions, procedures, and
applications.

7z

62

Use the IDLDE to create v o, w0 w
Applications - Use the IDLDE (IDL o ——
Development Environment) to '
compile and execute commands P i
immediately. It also includes built-in [~ T e
editing and debugging tools that iF W W W ©
provide instant feedback and “hands-
on” interaction.

Read and Write Data in IDL - Use IDL to read and write ailmost any kind of data.
Support is provided for common image standards and scientific data formats. If you
have data, you canread it into IDL!

Create Plotsin IDL - IDL includes many
2-D Plotting techniques, to observe the
results of your computations immediately.

Signal Processingin IDL - Use IDL Signal
Processing techniques to process a variety of
1-D signals, from traditional filtering and
transform operations to statistical methods
such as prediction analysis.

Surface and Contour Plots - Use IDL
Surface and Contour Plotting techniques to
display any 2-D dataset as surface.

Image Processing in IDL - Use IDL
Image Processing techniques to filter
out noise and to highlight true data
characteristics and expose anomalies.

W

Volume Visualization in IDL - Use
IDL Volume Visualization
functionality to visualize 3-D volume
datasets and to display a shaded surface
representation of a constant-density
surface (also called an iso-surface).

Getting Started with IDL

Chapter 1: The Power of IDL 11

e B e

Mapping Capabilitiesin IDL - Use IDL
Mapping techniques to plot data over different
projections of the globe.

o R R,

i Al ‘ . regularly-gridded data can then be sent to IDL’s

“*= plotting routines.

Animation in IDL - Use IDL for
Animation tasks to visualize your data
dynamically and to create an array of
images and play them back as an animated
sequence.

Create Applicationsin IDL - Use DL to
write sophisticated programs and
applications using a complete set of
program-control statements.

IDL GUIBuilder - Use the IDL
GUIBuilder to interactively create user
interfaces and then generate the IDL source
code that defines that interface.

crisl
Jopment buld of Mon Aug 8234342 MDT 1898 (Win32 486) [c) 1989, Research Syste

|

Ready Ins | (NUM 4

Getting Started with IDL

12 Chapter 1: The Power of IDL

Using this Manual

The chaptersincluded in this manual provide a“hands-on” way to learn basic IDL
concepts and techniques. Getting Sarted with IDL demonstrates a number of
common IDL applications: reading and writing data, 2-D plotting, signal processing,
surface and contour plotting, image processing, volume visualization, mapping,
plotting irregularly-gridded data, animation, programming in IDL, manipul ating data,
IDL Toolkits, and use of IDL’s GUIBuilder. Each section introduces basic IDL
concepts and highlights some of the commonly used IDL commands.

You don't have to read all of the descriptive passages that accompany each chapter.

Simply enter the IDL commands shownincouri er typeat the IDL Command I nput
Line (the“IDL>" prompt) and observe the results. Unless otherwise noted, each line
shown isa complete IDL command (press RETURN after typing each command). If
you want moreinformation about a specific command, you can read the explanations.

Each chapter functions similarly to atutorial and is ademonstration of a particular
IDL feature. It is recommended that you walk through each short, interactive chapter
to preserve continuity, since many commands rely upon previous commands. Each
chapter assumes the most basic level of IDL experience.

Note
The examples and graphicsin this manual have been captured using the Windows
platform. Where needed, explanations have been provided for use of the examples
on UNIX or Macintosh platforms.

Note
The dollar sign ($) at the end of thefirst lineisthe IDL continuation character. It
allowsyou to enter long IDL commands as multiple lines.

Note
To simplify obtaining useful results from the examples in this manual, create a
bitmap buffer for your graphic windows and use a maximum of 256 colors by
entering the following command at the IDL command prompt:

DEVI CE, RETAI N=2, DECOVPOSED=0

Using this Manual Getting Started with IDL

Chapter 2:
The IDL Development
Environment

This chapter introduces the IDL Devel opment Environment and its capabilities.

IDL’s Development Environment 14 QuittingIDL o i 20
Starting IDL 15 MoreInformation onthe IDLDE 21
ThelDL Interfaces 16

Getting Started with IDL 13

14 Chapter 2: The IDL Development Environment

IDL's Development Environment

IDL has a convenient multiple-document interface called the IDL Devel opment
Environment (sometimes also referred to as the IDLDE) that includes built-in editing
and debugging tools. The IDL Development Environment is available for use on the
Windows, Macintosh, and Motif (UNIX) platforms. This chapter briefly addresses
starting IDL, quitting IDL, and describes the components of the IDL Devel opment
Environment.

IDL's Development Environment Getting Started with IDL

Chapter 2: The IDL Development Environment 15

Starting IDL

Torun IDL, follow the instructions below.

1. Install and License IDL. For more information, see the IDL installation guide
for your platform.

2. StartIDL.

For Windows, click the Windows Start button, and select Programs —
Research Systems IDL 5.6 — IDL.

For Macintosh:
A. Navigate to the OroborOSX installation folder.

B. Double-click the Orobor OSX icon. OroborOSX launches X Darwin and
displays a UNIX X-Windows command line in an OS X window.

C. Enteri dl de at the UNIX command prompt.
For Motif, start IDL by entering the following at the % prompt:
i dl de

Getting Started with IDL Starting IDL

16 Chapter 2: The IDL Development Environment

The IDL Interfaces

IDL’s multiple-document interface is called the IDL Development Environment
(IDLDE) and includes built-in editing and debugging tools.

Note
A command line interfaceis also available on UNIX and Macintosh platforms. For
more information, see the Using IDL manual.

Note
All figures which are shown in this chapter are Windows environment figures but
the IDLDE isvery similar on each of the other platforms as well. Simply open the
IDLDE on your own environment and follow a ong with the descriptions of IDLDE
features.

The IDL Interfaces Getting Started with IDL

Chapter 2: The IDL Development Environment 17

The IDL Development Environment Layout

When you start IDL, the IDL Development Environment appears.

[EIDL #IDL-WIN - Evaluation Purposes Only

File Edit Search Bun Pioject Macios Window Help

EOFHE oy RBE 2ED|

- Hee 50y BE EENEES|
Tool Bar O bl b b

Menu Bar

PI’O] eCt WI ndOW €3 Mo Project Open
Multiple

Document

Panel

Output Log

IDL Version <Develapment buld of Thu Sep 3 2347:48 MDT 1939 (win32 486, (<] 1999, Research Systems, Inc.

Variable Watch
Window

Command Line Hane = Ve

Status Bar

DL> |
Ready | [[NuM | 4

Figure 2-1: The IDL Development Environment for Windows

Menu Bar

The Menu Bar, located at the top of the main IDL window, is used to control various
IDLDE features. When you select an option from the Menu Bar in the Devel opment
Environment, the Status Bar displays a brief description.

Tool Bar

There are three Tool Barsin the IDLDE: Standard, Run & Debug, and Macros. In
addition, when you open an IDL GUIBuilder window, its associated Tool Bar is
displayed. When you position the mouse pointer over a Tool Bar button, the Status
Bar displaysabrief description. If you click on aTool Bar button which represents an
IDL command, the IDL command issued is displayed in the Output Log.

Getting Started with IDL The IDL Interfaces

18 Chapter 2: The IDL Development Environment

Project Window

The Project Window displays information about the current Project you have openin
the IDLDE. IDL Projects allow you to easily develop applicationsin IDL. You can
manage, compile, run, and create distributions of all the filesyou will need to develop
your IDL application. All of your application files can be organized so that they are
easier to access and easier to export to other developers, colleagues, or users.

Multiple Document Panel

Thetop section of the main IDL window iswhere IDL Editor windows are displayed.
The IDL Editor iswhere you create applicationsin IDL. To see the Multiple
Document Panel at work, open the file examples.pro which can be found in the path:

rsi/idl 56/ exanpl es/ vi sual / exanpl es. pro

Notice the color coding of commands, comments, and so on.

&j C:\RSIMDL53\example.pro [_ (O] %]

end

pro WID BASE 0, GROUP_LEADER=wGroup. _EXTRA=_VWWBEztra_
Resolwe Routine, ‘exanple_swventch' ; Load ewvent callback r_I

WID_BASE_ 0 = Widget_Base(GROUP_LEADER=wGroup. UNAME='WID_BASE
CEQFFSET=5 | ¥OFFSET=5 | SCRE_HSIZE=300 SCRE_YSIZE=200 3
CTITLE='IDL' _SPACE=3 _XPAD=3 YPAD=3)

-

AV

Figure 2-2: Editor Window showing example.pro

Command Line

The Command Lineisasingle IDL prompt where you can enter IDL commands. If
you click the right mouse button while positioned over the Command Input Line, a
popup menu appears displaying the command history, with a default buffer of 10
entries and a maximum of 100 entries. IDL isan interpreted language and commands
are therefore executed immediately at the command line. To see the IDL Command
Linein action, enter the following in the Command Line at the IDL prompt and press
Enter:

print, '"Hello World!"

The IDL Interfaces Getting Started with IDL

Chapter 2: The IDL Development Environment 19

IDL> [print, “Hello World"{

Figure 2-3: Entering data at the IDL Command Line

Output Log

Output from IDL is displayed in the Output Log window, which appears by default
when the IDLDE isfirst started (notice the result of our print command in the Output
Log).

L

IDL>
IDL>
IDL>

IDL> PRINT, "Hello World!"
Hello World!

Figure 2-4: The IDL Output Log

Variable Watch Window

The Variable Watch window appears by default when you start the IDLDE. It keeps
track of variables as they appear and change during program execution (tabs exist for
viewing variables by type; Locals, Params, Common and System).

Status Bar

When you position the mouse pointer over a Control Panel button or select an option
from amenu item in the IDLDE, the Status Bar displays a brief description.

Getting Started with IDL The IDL Interfaces

20 Chapter 2: The IDL Development Environment
Quitting IDL

To quit the current IDL session and return to the operating system, select File - Exit
in the IDL Development Environment. You can also type EXI T at the IDL Command
Line

| DL>EXI T

Quitting IDL Getting Started with IDL

Chapter 2: The IDL Development Environment 21

More Information on the IDLDE

This overview has acquainted you with the very basic layout and function of the IDL
Development Environment. Morein-depth information on working with IDL and the
IDL Development Environment (IDLDE) can befound in Using IDL.

Getting Started with IDL More Information on the IDLDE

22 Chapter 2: The IDL Development Environment

More Information on the IDLDE Getting Started with IDL

Chapter 3:

Reading and Writing
Data

This chapter introduces IDL’s ability to read and write data.

IDL and Reading and Writing Data.. 24 Reading and Writing Binary Data 31
IDL Supported Formats 25 Reading and WritingImages 36
Importing Data from an ASCII File 26 More Information on IDL and Input/Output 38
SavingaTemplate 35

Getting Started with IDL 23

24 Chapter 3: Reading and Writing Data

IDL and Reading and Writing Data

IDL’sflexible input and output capabilities allow you to read and write virtually any
data format. When IDL reads a datafile, bytes or charactersin the file are converted
to the appropriate data type (unless the file is binary, in which case no conversion
takes place). Similarly, when writing data, the appropriate IDL variables are
converted to the appropriate bytes or characters. In this chapter, you' [l import some
existing data using IDL commands.

Note
To simplify obtaining useful results from the examplesin this manual, create a

bitmap buffer for your graphic windows and to use a maximum of 256 colors by
entering the following command at the IDL command prompt:

DEVI CE, RETAI N=2, DECOVPOSED=0

IDL and Reading and Writing Data Getting Started with IDL

Chapter 3: Reading and Writing Data 25

IDL Supported Formats

Image Formats

IDL includes routines for reading and writing many standard graphics file formats.
These routines and the types of files they support arelisted bel ow. Documentation on
these routines can be found in the IDL Reference Guide.

BMP PNG

GEO TIFF PPM
Interfile SRF

JPEG TIFF

NRIF XWD

PICT X11 Bitmap

Scientific Data Formats

There are four self-describing scientific data formats supported by IDL:

CDF (Common Data Format) HDF (Hierarchical Data Format)
HDF-EOS (Earth Observing netCDF (Network Common Data
System extensions to HDF) Format)

Detailed documentation for each format can be found in the Scientific Data Formats
manual.

Other Formats

ASCII Binary
DICOM WAV (Audio)
DXF XDR (External Data

Representation)

Getting Started with IDL IDL Supported Formats

26 Chapter 3: Reading and Writing Data

Importing Data from an ASCII File

One way of importing datain IDL isusing the ASCII_TEMPLATE function in
conjunction with the READ_ASCI|I function. To import an ASCII datafileinto IDL,
you must first describe the format of the data using the ASCII_TEMPLATE function.

1. AtthelDL Command Line, enter the following:
PLOTTEMPLATE=ASCI | _ TEMPLATE()

Thiscommand will guide you through assigning the description of the datato a
variable named PLOTTEMPLATE. A dialog box appears, prompting you to
select afile.
2. Select thefile “plot.txt” located in the data directory:
rsi-directory/exanpl es/ data/ plot.txt
Where rsi-directory is the installation directory for IDL.

Note

Another way to import ASCII dataisto use the Import ASCI| File toolbar button
on the IDLDE toolbar. To usethis feature simply click the button and the dialog will
appear so that you may select pl ot . t xt .

Pleaze Select a File EHE

Loaok in: I 24 data j gl B EE
L) map. pro riny. dat @rose.ipg

marbells. dat people.dat sphere. BAK,
mi_abdomen.dem people.ids sphere.pro

mi_brain.dem eople.jpg surface. dat
mi_knee.dcm ok bt us_test.dcm
myrose. jpg readme. bt worldely.dat
I+
File name: Iplot.txt Open I
Filez of type: I"." j Cancel |

Figure 3-1: Selecting the plot.txt file

Importing Data from an ASCII File Getting Started with IDL

Chapter 3: Reading and Writing Data 27

3. The Define Data Type/Range dialog appears:

&l|STEP 1 of 3: Define Data Type / Range [%]

Chooze the field type which best describes pour data:

' Fixed'idth [fields are aligned in columns)

& Delimited [commas, whitespace, etc. separate each fisld)

Comment String to |gnore:
D1ata Starts at Line: |3

Selected Text File: ity Est 5l Lines |

Text I |
1 ;This file describes two sanples of temperatures over time. -
2
3
4 |12 3.2 3.9
5 |13 6.0 7.1
6 |14 8.5 7.3
7 1% 9.2 10.1
g |1e 9.8 8.9
3 |17 12.7 13.9
in 11 [

2 7 hd
[l »

‘ Cancel | < Hack | Mest > | Eitiisk ”

Figure 3-2: the ASCIl_TEMPLATE dialog

4. Firstwewill choosethefield type. Since we know our datafile is delimited by
tabs (or whitespace) select the Delimited button. Also, be sure to specify to
begin reading the dataat line 3, not line 1inthe Data Startsat Linefield. This
is because there are two comment lines at the beginning of thefile.

5. Click Next.

Getting Started with IDL Importing Data from an ASCII File

28 Chapter 3: Reading and Writing Data

6. Now the Define Delimiter/Fields dialog box appears:

&l|STEP 2 of 3: Define Delimiter / Fields [%]
Mumber of Fields Per Line:

Delimiter Between D'ata Elements:

" white Space ¢ Comma ¢ Colon
" Semicolon & Tab € Other |:|

Selected Records:

Text

1 -
2 |12 3.2 3.9

3 |13 6.0 7.1

4 |14 8.5 7.3

5 |1t 9.2 10.1

6 |16 9.8 8.9

7 |17 12.7 13.9

g |18 8.2 7.2

3 |19 5.8 6.9

4 3

‘ Cancel | < Back | Mest > | Eitiisk ”

Figure 3-3: Selecting delimiter type in ASCIl_TEMPLATE

7. Atthisdialog, be sure to select Tab as the delimiter between data el ements
since we know we have used tabsin the origind file.

8. Now move on to the final dialog by clicking Next.

Importing Data from an ASCII File Getting Started with IDL

Chapter 3: Reading and Writing Data 29

0.

10.

11.

12.
13.

14.

Now the Field Specification dialog box appears:

&l|STEP 3 of 3: Field Specification [x]
e [Botee |][
1 |Time Long -
2 |Templ Floating Type: IFlDating Paint 'l

Group I hEraup

_ILI Group Al | Ungroup &l
4 »

Walue to Azsign to Missing Data: & |[EEE NaN l:l

Sample Record:

Time Tenpl Tenpl
1 |11 2.9 -

-
A 3

‘ Cancel | < Back | [ERts | Finizh ”

Figure 3-4: Naming the data type sets in ASCIl_TEMPLATE

Inthisdialog, we will giveanameto each datafield for IDL to recognize each
set. At the top of the box, click on the first row (row 1) and then name the data
set by typing the name Time for the first set in the box.

Next, move on to the second row, naming this data set Templ for the first set
of temperatures in the data set.

Finally, name the last data set Temp2. Click Finish.

Type the following line at the IDL Command Line to read in thefile
pl ot . t xt using the template we've just created:

PLOT_ASCl | =READ_ASCl | (FI LEPATH(' plot.txt', SUBDIR = $
[' exanples', 'data']), TEMPLATE = PLOTTEMPLATE)

Then enter:
PRI NT, PLOT_ASC |

Getting Started with IDL Importing Data from an ASCII File

30

You will seethe following displayed:

Chapter 3: Reading and Writing Data

) =
IDL> FRINT, PLOT_ASCII
1z 1z 14 15 le 17 1a 13
Z.90000 3.Z0000 &.00000 8.50000 2.z0000 8.80000 1lz.7000 2.z0000 £.20000
1.20000 3.90000 7.10000 7.30000 10,1000 8.20000 12,9000 7.z0000 £.90000
}
HName Tope | Value
FLOTTEMPLATE STRUCT | { ¢Anonymous> }
PLOT_ASCH STRUCT { <Anarymous> }

System | 4]

Params % Common

Figure 3-5: PLOT_ASCII printed

Note

Note that PLOT_ASCII isatype STRUCT. When using READ_ASCII toread a
file, the datais read into a structure variable. For more information on importing
data into structure variables, see Using IDL.

Note

You may need to resize the IDL Output Log in order to seethe PLOT_ASCII

information displayed in correct columns.

Importing Data from an ASCII File

Getting Started with IDL

Chapter 3: Reading and Writing Data 31

Reading and Writing Binary Data

Reading datafilesinto IDL iseasy if you know the format in which the datais stored.
Often, images are stored as arrays of bytes instead of a known format like JPEG or
TIFF. Thesefileswe'll refer to as “Binary” files. The binary file that we will read in
the following example contains an image of the Maroon Bells mountains, a group of
mountains located in the Rocky Mountains of Colorado, stored as an integer array.

1. Wewill usethe BINARY_TEMPLATE function in conjunction with the
READ_BINARY function. At the IDL Command Line, enter the following:

MARBELL STEMPLATE=BI NARY_TEMPLATE(FI LEPATH("' surface.dat', $
SUBDIR = ['exanples', 'data']))

Note
Another way to import Binary dataisto use the “Import Binary File” toolbar button
on the IDLDE toolbar. To usethisfeature simply click the button and the dialog will
appear so that you may select “surface.dat”.

&l Binary Template [%]
Template name: |marbelstemplate File's byte: ordering: INative 'l

Fields:

Mame Offset | # Dims Size Type Feturn | Yerify

Mew Field... | ModifpFeld.. | Bemove Field

&I Cancel |

Figure 3-6: The binary template dialog

The binary template dialog box shown above appears.

2. Inthe Template Name field, enter “marbellstemplate” for the name of our
new template.

3. IntheFile'sbyte ordering pull-down field, select “Little Endian” since we
know that this file was created on an Intel processor-based machine. For more
information about file byte ordering, see Chapter 15, “Reading and Writing
Binary Data” in Using IDL.

Getting Started with IDL Reading and Writing Binary Data

32 Chapter 3: Reading and Writing Data

4. Now we are ready to enter the field values, click the New Field button in the
lower left corner of the dialog box.

5. When the New Field dialog appears, enter “A” asthe field name. Verify the
box in the upper right corner marked Returned in the result since we will
want our data set returned at thetime it isread.

6. AttheNumber of Dimensions pull-down menu, be sure to specify that we are
dealing with atwo-dimensional data set here. These dataare contained in a350
by 450 array, so we will enter these valuesin the two boxes marked Size.

7. Finaly, let the binary template dialog know that we are dealing with I nteger

type data by specifying Integer (16 bits) at the Type pull-down menu. Click
OK.

&l New Field |]
Field name: |A |
Offset: bytes ‘when a file iz read with

" From beginning of file

& From initial position i file

™ Allow an expression for the offset

this template, this field shall be:
¥ Retumed in the result

I | erified equal b I:I

Type: | Integer (16 bits)

=

Dimensions: Mumber of dimensions: I 2 = l

[Allow expressions for dimension sizes

st dimensior:

W Frvese Stk dimetsian:

2nd dimensior: W Frvese Bth dimetisian:
Srd dimetsian: O Fiaveres 7tk dimersian:

Aty dimersian: Bith dimersion:
()8 | Cancel |

Figure 3-7: Modifying fields in binary template

Reading and Writing Binary Data

Getting Started with IDL

Chapter 3: Reading and Writing Data 33

Onceyou have entered the above data, the binary template dialog appears once
again showing the specifications you have made. Your dialog should appear as
the following figure.

&l Binary Template [%]
Template name: |marbelstemplate File's byte: ordering: INative 'l
Fields:

Mame Offset | # Dims Size Type Feturn | Yerify

[350, 450]

Mew Field... | Modity Field... | Remove Field

&I Cancel |

Figure 3-8: The “completed” binary template dialog

8. Now click OK.

Getting Started with IDL Reading and Writing Binary Data

34 Chapter 3: Reading and Writing Data

Now we will use the READ_BINARY function to read the template we have just
created.

9. AtthelDL Command Line, enter:

MARBELLS BI NARY=READ BI NARY (FI LEPATH(' surface.dat', $
SUBDI R=[' exanpl es', 'data']), TEMPLATEEMARBELL STEMPLATE)

10. Now display the image by entering:
TVSCL, MARBELLS_BI NARY. A

Figure 3-9: Surface.dat displayed using TVSCL
You can view animagein IDL with two different routines. The TV procedure writes

an array to the display as an image without scaling. The TV SCL procedure displays
the image with the color values scaled to use the whole color table.

Reading and Writing Binary Data Getting Started with IDL

Chapter 3: Reading and Writing Data 35

Saving a Template

If you have multiple ASCII or Binary files of the same format, you can save your
template so that you can reuse it. We'll demonstrate saving the template we created
earlier in this section:

1. Savethe ASCII template you have just created by entering:
SAVE, PLOTTEMPLATE, FI LENAMVE=' MYPLOTTEMPLATE. dat '

2. Then, you can restore the template so that you can read another ASCI|I file:
RESTORE, ' PLOTTEMPLATE. dat '

This actually restores the variable named PLOTTEM PLATE which contains
the template information.

You can now read in another file using the READ_ASCI| function by
specifying PLOTTEMPLATE. dat for the TEMPLATE.

Note
You may also use an ASCII template to read another ASCI| file provided that the
data starts on the same line as the template specifies and that it is delimited in the
same way as the template specifies.

Getting Started with IDL Saving a Template

36 Chapter 3: Reading and Writing Data
Reading and Writing Images

Reading imagefilesinto IDL isalso easy if you know the format in which the image
is stored. First we must read in the image. Here we will use a TIFF format image of
an aerial satellite view of Manhattan Island in New York City.

1. Enter thefollowing at the IDL Command Line:

MYl MAGE=READ_TI FF(FI LEPATH(' i mage.tif', SUBDI R= $
["exanples', 'data']))

This command reads the image into memory.
2. Now display the image:

TV, MYl MAGE

Note
Another way to import image datais to use the “Import Image File” toolbar button
on the IDLDE toolbar. To usethis feature simply click the button and the dialog will
appear so that you may select “image.tif”. However, this will name the image
differently than shown in this example. For more information, see Chapter 13,
“Reading and Writing Images” in Using IDL.

Figure 3-10: Reading and displaying an image file

Reading and Writing Images Getting Started with IDL

Chapter 3: Reading and Writing Data 37

3. Now, using IDL’'s WRITE_TIFF command, rename and write the file:
WRI TE_TI FF, 'imagecopy.tif', MYl MAGE

Getting Started with IDL Reading and Writing Images

38 Chapter 3: Reading and Writing Data

More Information on IDL and Input/Output

For more information about IDL’s input/output capabilities, see Using IDL. Also, for
more detailed information on the functions and procedures you have seen in this
chapter, see the IDL Reference Guide.

More Information on IDL and Input/Output Getting Started with IDL

Chapter 4.

2-D Plotting

This chapter describes the following topics:

IDLand2-DPlotting
SimplePlotting
Plotting with DataSets

Getting Started with IDL

40 Other Plotting Capabilities
41 UsingLIVE_PLOT

44 MoreInformation on 2-D Plotting

39

40 Chapter 4: 2-D Plotting

IDL and 2-D Plotting

IDL makes plotting data easy. X versus'Y plots can be displayed with asingle
command and multiple plots can be viewed at the same time. This tutorial
demonstrates some of IDL’s plotting capabilities. We will also examine how you
enter statements at the IDL Command Line. This demonstrates IDL’s interactive
capability, and shows how easy it isto manipulate your data.

Note
To simplify obtaining useful results from the examples in this manual, create a
bitmap buffer for your graphic windows and to use a maximum of 256 colors by
entering the following command at the IDL command prompt:

DEVI CE, RETAI N=2, DECOVPOSED=0

IDL and 2-D Plotting Getting Started with IDL

Chapter 4: 2-D Plotting 41

Simple Plotting

Simple plots can be charted using the PLOT procedure. Each call to PLOT
establishes the plot window (the rectangular area enclosed by the axis), the plot
region (the box enclosing the plot window and its annotation), the axis types (linear
or logarithmic), and the scaling.

First, we'll plot asimple graph using a sine function. Use the FINDGEN function
here to specify the dimensions of the array. The FINDGEN function returns a single-
precision, floating-point array, with the specified dimension, where each element of
the array is set to the value of its one-dimensional subscript.

1. First, create avalue for the X axis:
X= 2*1PI/100 * FI NDGEN(100)
2. Now, use PLOT to visualize the array:
PLOT, SIN(X)

05+ -

a 20 40 &0 ac 100

Figure 4-1: A simple sine wave using the PLOT command

Also, additional data can be added, as before, using the OPLOT procedure.
Frequently, the color index, linestyle, or line thickness parameters are changed in
each call to OPLOT to distinguish the data sets. The IDL Reference Guide contains a
table describing the features you can change.

Getting Started with IDL Simple Plotting

42 Chapter 4: 2-D Plotting

Using OPLOT

Now use OPLOT to plot the new information over the existing plot:
1. Plot at twice the frequency:
OPLOT, SI N(2*X)
2. Plot at three times the frequency:
OPLOT, SI N(3*X)
The results are shown in the following figure.

a 20 40 &0 ac 100

Figure 4-2: Graphing various data using the OPLOT command

Simple Plotting Getting Started with IDL

Chapter 4: 2-D Plotting 43

Printing a Plot

IDL alowsyou to easily print the plot just created. Simply enter the following
command lines shown.

1. First, save the original settings of your plotting environment:
MYDEVI CE=! D. NAVE

2. Tell IDL that you wish to designate the printer to be the destination for the
plot:

SET_PLOT, 'printer'
3. Now plot again to the printer:
PLOT, SIN(X)
4. Closethe printing device:
DEVI CE, /CLOSE
5. Redesignate the original setting as the future destination for any plots:

SET_PLOT, MYDEVI CE
Note
If you are having problems printing on UNIX, be sure your printer is configured
correctly. For more information on this see DIALOG_PRINTERSETUPin the IDL
Reference Guide.

Getting Started with IDL Simple Plotting

44 Chapter 4: 2-D Plotting

Plotting with Data Sets

To demonstrate IDL's capability to read a data set and plot it, wewill use the template
and data set used in the last chapter (Chapter 3, “ Reading and Writing Data”).

1. AtthelDL Command Line, enter the following:

PLOT_ASCl | =READ_ASCI | (FI LEPATH(' pl ot.txt',h SUBDIR= $
[' exanpl es', 'data']), TEMPLATE=PLOTTEMPLATE)

2. Plot thefirst set of data on temperatures which is stored in Temp1:
PLOT, PLOT_ASCI|.TIME, PLOT_ASCII.TEWP1

Figure 4-3: Plotting an existing data set using PLOT

Note
Thefileisread into a structure variable. For more information on importing data
into structure variables, see Using IDL.

Plotting with Data Sets Getting Started with IDL

Chapter 4: 2-D Plotting 45

Other Plotting Capabilities

Now add titles to the simple plot graph using the TITLE, XTITLE, and YTITLE
keywords. Using these simple keywords, IDL allowsyou to add atitle to your plot as
well as descriptivetitlesfor your X and Y axis.

1. Plot with titles:

PLOT, PLOT_ASCI | . TI ME, PLOT_ASCI | . TEMPL, TI TLE= $
' Tenperature Over Time', XTITLE= $
Time in Seconds', YTI TLE=' Tenperature Cel sius'

Termperature Cver Time
T T

Tempergiure Celsiug

8] I I L
10 1z 14 16 18 20
Time in Seccnds

Figure 4-4: Adding titles to a plot using TITLE, XTITLE and YTITLE

Getting Started with IDL Other Plotting Capabilities

46 Chapter 4: 2-D Plotting

Using LIVE_PLOT

TheLIVE_PLOT procedure allowsyou to create an interactive plotting environment.
Once plotted, you can double click on a section of the plot to display a properties
dialog. A set of buttonsin the upper left corner of the image window allows you to
print, undo the last operation, redo the last “undone” operation, copy, draw aline,
draw arectangle, or add text. Using any of severa auxiliary routines, you can control
your LIVE window after it is created. See LIVE_PLOT in the IDL Reference Guide
for an explanation.

1. Read inthesame“Time over Temperature’ data (See Chapter 3, “Reading and
Writing Data” for instructions):

PLOT_ASCl | =READ_ASCI | (FI LEPATH(' pl ot.txt',h SUBDIR= $
[' exanpl es', 'data']), TEVPLATE=PLOTTEMPLATE)

2. CreatealLIVE plot

LI VE_PLOT, PLOT_ASCI | . TEMP1, PLOT_ASCI | . TEMP2, $
NAME={ dat a: [' Tenpl', 'Tenp2']}

Using LIVE_PLOT Getting Started with IDL

Chapter 4: 2-D Plotting a7

The result is shown in the following figure:

il Live Plot =] B3

8| 2| =[N 2] A]

Tempi
Tempz

Figure 4-5: Using the LIVE_PLOT procedure

Getting Started with IDL Using LIVE_PLOT

48 Chapter 4: 2-D Plotting

More Information on 2-D Plotting

IDL has many more plotting capabilities than the ones shown in this chapter. To take
advantage of all of IDL’s powerful capabilitiesin creating two-dimensional plots,
look for moreinformation in Using IDL.

More Information on 2-D Plotting Getting Started with IDL

Chapter 5:
Signal Processing

This chapter describes the following topics:

IDL and Signal Processing 50 Frequency Domain Filtering 55
CreatingaDataSet 51 DisplayingtheResults 58
Signal Processing with SMOOTH 54 More Information on Signal Processing... 60

Getting Started with IDL 49

50 Chapter 5: Signal Processing

IDL and Signal Processing

This chapter introduces you to IDL’s digital signal processing tools. Mogt of the
procedures and functions mentioned here work in two or more dimensions. For
simplicity, only one-dimensional signals are used in the examples.

A signal, by definition, containsinformation. Any signal obtained from a physical
process also contains noise. It is often difficult or impossible to make sense of the
information contained in adigital signal by looking at it inits raw form—that is, asa
sequence of real values at discrete pointsin time. Signal analysis transforms offer
natural, meaningful, alternate representations of the information contained in a
signal.

IDL and Signal Processing Getting Started with IDL

Chapter 5: Signal Processing 51

Creating a Data Set

First, we need to create adataset to display.

1. Enter the following command to create a sinewave function with a frequency
that increases over time and storeit in avariable called ORI Gl NAL:

ORI Gl NAL=SI N((FI NDGEN(200) / 35) ~2. 5)

The FINDGEN function returns a floating-point array in which each element
holds the value of its subscript, giving us the increasing “time” values upon
which the sinewave is based. The sine function of each “time” value divided
by 35 and raised to the 2.5 power is stored in an element of the variable

ORI G NAL.

2. Toview aquick plot of this dataset, shown in the following, enter:
PLOT, ORI G NAL

05+ H

a 50 100 150 200

Figure 5-1: Plot of increasing frequency

Getting Started with IDL Creating a Data Set

52 Chapter 5: Signal Processing

3. Now add some uniformly-distributed random noise to this dataset and store it
inanew variable:

NO SY=ORI Gl NAL+((RANDOMJ(SEED, 200) -. 5)/ 2)
4. Now plot the array:
PLOT, NO SY

ask
0.0}

05-

1 1
a 50 100 150 200

Figure 5-2: Plot of random noise
The RANDOMU function creates an array of uniformly distributed random

values. The original dataset plus the noiseis stored in a new variable called
NO SY. This dataset looks more like real-world test data.

Creating a Data Set Getting Started with IDL

Chapter 5: Signal Processing 53
5. Display the original dataset and the noisy version simultaneoudy by entering
the following commands:
PLOT, ORI G NAL, XTITLE="Time", YTI TLE="Anplitude", TH CK=3

6. Then overplot the previous data:
OPLOT, NO SY

The XTITLE and YTITLE keywords are used to createthe X and Y axistitles.
The OPLOT command plots the NO SY dataset over the existing plot of

ORI Gl NAL without erasing. Setting the THICK keyword causes the default
line thickness to be multiplied by the value assigned to THICK, so you can
differentiate between the data. Thisresult can be seen in the following figure.

Amplitude

100 150 200

Time

Figure 5-3: Combined plotting of datasets using the OPLOT command and
THICK keyword

Getting Started with IDL Creating a Data Set

54 Chapter 5: Signal Processing

Signal Processing with SMOOTH

A simple way to smooth out the NO SY dataset isto use IDL's SMOOTH function. It
returns an array smoothed with a boxcar average of a specified width.

1. Create anew variable to hold the smoothed dataset by entering the following
command:

SMOOTHED=SMOOTH(NOI SY, 5)
2. Now plot your new data set:
PLOT, SMOOTHED, Tl TLE=' Snoot hed Dat a'

The TITLE keyword draws the title text centered over the plot. Notice that
while SMOOTH did afairly good job of removing noise spikes, the resulting
amplitudes taper off as the frequency increases.

Smaoathed Dato

0.5

0.0

1 1
a 50 100 150 200

Figure 5-4: Using the SMOOTH command

Signal Processing with SMOOTH Getting Started with IDL

Chapter 5: Signal Processing 55

Frequency Domain Filtering

Perhaps a better way to eliminate noise in the NO SY dataset isto use Fourier
transform filtering techniques. Noiseis basically unwanted high-frequency content in
sampled data. Applying alowpass filter to the noisy data allows low-frequency
componentsto remain unchanged while high-frequencies are smoothed or attenuated.
Congtruct afilter function by entering the following step-by-step commands:

1. Create afloating point array using FINDGEN which sets each element to the
value of its subscript and storesit in the variable Y by entering:

Y=[FI NDGEN(100) , FI NDGEN(100) - 100]

2. Next, make the last 99 elements of Y amirror image of the first 99 elements:
Y[101: 199] =REVERSE(Y[0: 98])

3. Now, create avariable filter to hold the filter function based on V:
filter=1.0/ (1+(Y/ 40)~10)

4. Finaly, plot:
PLOT, FI LTER

DE- -

06 -

0.2 -

a 50 100 150 200

Figure 5-5: Constructing a filter function

Getting Started with IDL Frequency Domain Filtering

56 Chapter 5: Signal Processing

To filter datain the frequency domain, we multiply the Fourier transform of
the data by the frequency response of afilter and then apply aninverse Fourier
transform to return the data to the spatial domain.

1. Now we can use alowpass filter on the NO SY dataset and store the filtered
datain thevariable| owpass by entering:

LOWPASS=FFT(FFT(NO SY, 1) *filter, - 1)
2. Then plot:
PLOT, LOWPASS

ask
0.0

05-

a 50 100 150 200

Figure 5-6: Using a LOWPASS filter

Note
Your plots may look slightly different due to the random number generator.

Frequency Domain Filtering Getting Started with IDL

Chapter 5: Signal Processing 57

1. The samefilter function can be used as a high-pass filter (allowing only the
high frequency or noise components through) by entering:

HI GHPASS=FFT(FFT(NO SY, 1) *(1.0-filter), -1)
2. Then plot:
PLOT, HI GHPASS

0.4 T T T

02

:

0.7k H

-0.4 I I 1
u] =] 100 150 200

Figure 5-7: Using a highpass filter

Getting Started with IDL Frequency Domain Filtering

58

Chapter 5: Signal Processing

Displaying the Results

Now look at al of the results at the same time. The plotting window can be split into
six sections, making each section display a different plot. The system variable
IPMULTI tellsIDL how many plots to put on a single page.

Enter the following lines to display a plotting window which shows all of the plots
simultaneously.

1. Todisplay al plots at the same time with two columns and three rows, enter:

'P. MULTI =[0, 2, 3]
Now, display original dataset, upper-left:

PLOT, ORI G NAL, TI TLE=' Ori ginal (Ideal) Data’
Next, display noisy dataset in the upper-right:

PLOT, NOI SY, TI TLE=' Noi sy Dat a'

Display filter function, middle-left. The SHIFT function was used to show the
filter’s peak as centered.

PLOT, SHI FT(filter,100), TITLE='Fil ter Function'
Now, display low-pass filtered dataset in the middle-right:
PLOT, LOWPASS, TI TLE=' Lowpass Fil tered'
Display high-frequency noise, lower-|¢eft:
PLOT, Hl GHPASS, Tl TLE=' Hi ghpass Fil tered'

Displaying the Results Getting Started with IDL

Chapter 5: Signal Processing 59

7. Finaly, display the SMOOTH function dataset for comparison with the low-
pass filtered data in the lower right.

PLOT, snoothed, TITLE = 'Snpothed with Boxcar average'

1D
‘15/
oL

Driginol “ldecl Dalo gy Dolo

o) 03 = o) 03 = oo
. Filer Furcfion ; . Lowpoas TiHered
anf — 3
waf 3]
asf 1 Lt
Ll] -
o) 03 = oo o) 03 = oo
a Highpoma Fileed . Smaoihed rilh Bowcor Aweroge

Figure 5-8: Display results using !PMULTI to show six plots in one plotting
window

8. Before continuing with the rest of the chapters, reset the plotting window to
display a single image by entering the command:

I'P. MULTI =0

Getting Started with IDL Displaying the Results

60 Chapter 5: Signal Processing

More Information on Signal Processing

Using just afew IDL commands, we have performed some complex and powerful
signal processing tasks. IDL has many more signal processing abilities than the ones
shown in this chapter. To take advantage of all of IDL's powerful capabilities, ook
for more information in the Using | DL manual.

More Information on Signal Processing Getting Started with IDL

Chapter 6:

Image Processing

This chapter describes the following topics:

IDL and ImageProcessing 62
Readinganimage 63
Displayinganimage 64
Resizinganlmage 66
Resizing a GraphicsWindow 67
Contrast Enhancement 68

Getting Started with IDL

Smoothing and Sharpening 74
Other Image Manipulations 78
Extracting Profiles 80
UsingLIVE_IMAGE 81
More Information on Image Processing . .. 82

61

62 Chapter 6: Image Processing

IDL and Image Processing

IDL isanideal tool for image processing because of itsinteractive operation, uniform
notation, and array-oriented operators and functions. Images are easily represented as
two-dimensional arraysin IDL and can be processed just like any other array. IDL
also contains many procedures and functions specifically designed for image display
and processing.

In this chapter, we will enter statements at the IDL Command Line. This
demonstrates | DL's interactive capability, and shows how easy it is to manipul ate
your data.

Note
To simplify obtaining useful results from the examples in this manual, create a
bitmap buffer for your graphic windows and to use a maximum of 256 colors by
entering the following command at the IDL command prompt:

DEVI CE, RETAI N=2, DECOVPOSED=0

IDL and Image Processing Getting Started with IDL

Chapter 6: Image Processing 63

Reading an Image

First we must import an image to be processed. Reading datafilesinto IDL is easy.
The file that we will read contains the image we used in Chapter 3, “ Reading and
Writing Data” of an aerial view above Manhattan in TIFF format.

1. Read thefile by entering:

MYl MAGE=READ_TI FF(FI LEPATH(' i mage.tif', SUBDI R= $
["exanples', 'data']))

Getting Started with IDL Reading an Image

64 Chapter 6: Image Processing

Displaying an Image

You can view animagein IDL with two different routines. The TV procedure writes

an array to the display as an image without scaling. Enter the commands below at the
IDL Command Line.

Note

The default graphics window size is 640 by 512 pixelsin size on aUNIX
workstation and one-fourth of the display size on most Windows environments.

1. Display the image:
TV, MYl MAGE

Figure 6-1: Displaying an image with TV

2. Enter WDELETE at the Command Line to dismiss the graphics window.
WDELETE

3. The TV SCL procedure displays the image with the color values scaled to use
the whole color table. Display the scaled image:

TVSCL, MYl VAGE

Displaying an Image Getting Started with IDL

Chapter 6: Image Processing 65

Figure 6-2: Displaying an image with TVSCL

4. Enter WDELETE at the Command Line to dismiss the graphics window.
WDELETE

Getting Started with IDL Displaying an Image

66 Chapter 6: Image Processing
Resizing an Image

The REBIN function in IDL makesit easy to resize a vector or array to new
dimensions. The supplied dimensions must be proportionate (that is, integral
multiples or factors) to the dimensions of the original image. Since our original image
array hereis 768 by 512, we'll need to decide the correct dimensions of our new
resized image. If we want to resize the image to half the original size then smply take
half of the array’s original dimensions.

1. Create anew image with new dimensions using the REBIN function:
NEW MAGE=REBI N(MYl MAGE, 384, 256)

2. Now display the image:
TV, NEW MAGE

Voo
-

g

Figure 6-3: MYIMAGE resized to one half the original array size

3. Enter WDELETE at the Command Line to dismiss the graphics window.

WDELETE

Note
The CONGRID function a so shrinks or expands the size of an array. CONGRID
differsfrom REBIN in that where REBIN requires that the new array size must be
an integer multiple of the original size, CONGRID will resize an array to any
arbitrary size. For more information, see CONGRID in the IDL Reference Guide.

Resizing an Image Getting Started with IDL

Chapter 6: Image Processing 67

Resizing a Graphics Window

IDL automatically creates a window for displayed graphicsif one does not already
exist. You can use the WINDOW command to create new windows with custom
sizes.
1. Todisplay Manhattan in alarger graphics window, enter:
W NDOW 0, XSI ZE=800, YSI ZE=600

2. Then enter:

TV, MYl MAGE

Figure 6-4: Visualizing a graphic through a larger graphic window
3. Enter WDELETE at the Command Line to dismiss the graphics window for
the next graphic.
WDELETE

The WINDOW command above creates a new version of window number O that is
800 pixels wide (specified with the XSIZE keyword) and 500 pixelstall (specified
with the Y SIZE keyword).

Getting Started with IDL Resizing a Graphics Window

68 Chapter 6: Image Processing

Contrast Enhancement

In order to improve the look of animage, sometimes all that is necessary is a change
in how the colors are represented. IDL provides several ways to manipulate the
contrast.

Thresholding

One of the simplest contrast enhancements that can be performed on animageis
thresholding. Thresholding produces a two-level mapping from al of the possible
intensities into black and white. The IDL relational operators, EQ, NE, GE, GT, LE,
and LT, return avalue of 1if therelationistrue and O if the relation isfalse. When
applied to images, therelation is evaluated for each pixel and an image of 1'sand 0's
results.

1. Todisplay the pixelsin the image that have values greater than 140 as white
and all others as black, as shown in the following, enter:

TVSCL, MYl MAGE GT 140

Figure 6-5: Image with all values greater than 140 shown as white

Contrast Enhancement Getting Started with IDL

Chapter 6: Image Processing 69

2. Similarly, the pixelsthat have values less than 140 can be displayed as white,
as shown, by entering the command:

TVSCL, MYl MAGE LT 140

Figure 6-6: Image with all values less than 140 shown as white

In many images, the pixels have values that are only a small subrange of the
possible values. By spreading the distribution so that each range of pixel
values contains an approximately equal number of members, the information
content of the display is maximized, as shown in the following.

Getting Started with IDL Contrast Enhancement

70 Chapter 6: Image Processing

3. TheHIST_EQUAL function performsthis redistribution on an array. To
display a histogram-equalized version of myimage, enter the following:

TV, H ST_EQUAL(nyi mage)

Figure 6-7: A histogram-equalized version of the image

Contrast Enhancement Getting Started with IDL

Chapter 6: Image Processing 71

Scaling Pixel Values

Another way to enhance the contrast of an image is to scale a subrange of pixel
values to fill the entire range of displayed brightnesses. The > operator, the IDL
maximum operator, returns aresult equal to the larger of its two parameters. The
following commands contrast the maximum and minimum operators.

1. Scde pixelswith avalue of 100 or greater into the full range of displayed
brightnesses:

TVSCL, Myl MAGE > 100

Figure 6-8: Image with pixels >100 scaled to full range of brightness

2. Scale pixels with avalue less than 140 into the full range of brightnesses.
TVSCL, MYl MAGE < 140

Getting Started with IDL Contrast Enhancement

72 Chapter 6: Image Processing

Figure 6-9: Image with pixels <140 scaled to full range of brightness

3. The minimum and maximum operators can be used together for more
complicated contrast enhancements. Set the minimum brightness to 140, set
the maximum brightness to 200, scale myimage and display it by entering:

TVSCL, MYl MAGE >140<200

Figure 6-10: Image with minimum brightness at 140
and maximum brightness at 200

Contrast Enhancement Getting Started with IDL

Chapter 6: Image Processing 73

Note
Although this command illustrates the use of the IDL minimum and maximum
operators, the same function can be executed more efficiently by IDL with the
command:

TV, BYTSCL(MYl MAGE, M N=140, MAX=200, TOP=! D. TABLE_SI ZE)

Getting Started with IDL Contrast Enhancement

74 Chapter 6: Image Processing

Smoothing and Sharpening

Images can be rapidly smoothed to soften edges or compensate for random noise in
an image using IDL's SMOOQOTH function. SMOOTH performs an equally weighted
smoothing using a square neighborhood of an arbitrary odd width, as shown below.

1. Display myimage smoothed using a7 by 7 area:
TVSCL, SMOOTH(MYl MAGE, 7)

Figure 6-11: Smoothing with SMOOTH

Smoothing and Sharpening Getting Started with IDL

Chapter 6: Image Processing 75

Unsharp Masking

The previousimage looks a bit blurry because it contains only the low frequency
components of the original image. Often, an image needs to be sharpened so that
edges or high spatia frequency components of the image are enhanced. One way to
sharpen an image is to subtract a smoothed image containing only low-frequency
components from the origina image. This technique is called unsharp masking.

1. Unsharp mask and display image:
TVSCL, FLOAT(MYl MAGE) - SMOOTH(MYl MAGE, 7)

Figure 6-12: Unsharp masking

This command subtracts a smoothed version of the image from the original, scales
the result, and displaysit, as shown previously.

Getting Started with IDL Smoothing and Sharpening

76 Chapter 6: Image Processing

Sharpening Images with Differentiation

IDL has other built-in sharpening functions that use differentiation to sharpen
images. The ROBERTS function returns the Roberts gradient of an image. Enter the
following commands:

1. Create anew variable, R, that contains the Roberts gradient of myimage:
R=ROBERTS(MY| MAGE)

2. Display array R:
TVSCL, R

Figure 6-13: Roberts gradient of myimage

Another commonly used gradient operator is the Sobel operator. IDL's SOBEL
function operates over a 3 by 3 region, making it less sensitive to noise than some
other methods. Enter the following commands.

1. Create a Sobel sharpened version of the image:
SO=SOBEL(MYl MAGE)

2. Display the sharper image:
TVSCL, SO

Smoothing and Sharpening Getting Started with IDL

Chapter 6: Image Processing 77

Figure 6-14: Sobel sharpened version of myimage

Loading Different Color Tables

Try loading some of the pre-defined IDL color tables to make thisimage more
visible. While the graphics window is visible, type XLOADCT at the IDL Command
Input Line. The XLOADCT widget application appears. Select a color table from the
field; the window will reflect the color scheme. Click “Done” to accept a color table.
When you are finished looking at the effects of different tables, click on thefirst color
table in the field, B-W Linear, and click “Done” to load the original black and white
color table.

Note
If you load anew color table while an image is still being displayed on a 24-bit
(true) color display, you will need to close theimage and reload itin IDL in order to
see the new image displayed in the new color scheme. In an 8-bit (pseudo) color
display however, you will not need to re-display the image as the color change will
be immediate.

Getting Started with IDL Smoothing and Sharpening

78 Chapter 6: Image Processing

Other Image Manipulations

Sections of images can be easily displayed by using subarrays.

1. Erasethe current display, create a new array that contains Manhattan and
display it by entering:

ERASE
E=MYl MAGE[100: 300, 150: 250]

2. Then enter:
TV, E

Figure 6-15: Displaying a section of an image

3. Enter WDELETE at the Command Line to dismiss the graphics window.
WDELETE

Other Image Manipulations Getting Started with IDL

Chapter 6: Image Processing 79

Rotating an Image

Simple rotation in multiples of 90 degrees can be accomplished with the ROTATE
function.

1. Rotate the image by 90 degrees, as shown below, by entering:
R=ROTATE(E, 1)

2. Now enter to display:
TVSCL, R

Figure 6-16: The image rotated by 90 degrees

The second parameter of ROTATE is an integer from 1 to 8 that specifies

which one of the eight possible combinations of rotation and axis reversal to
use.

3. Enter WDELETE at the Command Line to dismiss the graphics window for
the next graphic.

WDELETE

Getting Started with IDL Other Image Manipulations

80 Chapter 6: Image Processing

Extracting Profiles

Another useful image processing tool is the PROFILES routine. This routine
interactively draws row or column profiles of an image. It allows you to view an
image and an X-Y plot of the pixel brightnessesin any row or column of the image
simultaneously.

1. Usethe PROFILES routine with the rotated image that you just displayed by
entering the following:

PRCFI LES, R

i Profiles

Row Profile

Figure 6-17: Viewing an image and an X-Y plot of the pixel brightnesses in any
row or column

A new window for displaying the profiles appears. Move the cursor in the
window containing the image R to display the profiles of different rows and
columns.

2. Click theleft mouse button while the cursor is in the image window to switch
between displaying row and column profiles.

3. Click theright mouse button while the cursor isin theimage window to exit
the PROFILES routine.

Extracting Profiles Getting Started with IDL

Chapter 6: Image Processing 81

Using LIVE_IMAGE

The LIVE_IMAGE procedure displays visualizations and allows interactive
mani pulation using the mouse and keyboard.

1. Todisplay the same image of New York City that we used in Chapter 3,
“Reading and Writing Data’, thistime using LIVE_IMAGE, enter:

LI VE_I MAGE, Myl MAGE

&l Live Image M=l E3

8| 2| ||\ oAl

135

Figure 6-18: MYIMAGE shown using LIVE_IMAGE

You can click once on the image and then drag the cursor across theimageto read the
image values.

You may also double-click on theimage to display a properties dialog. The set of
buttons in the upper left corner of the image window allows you to print, undo the last
operation, redo the last “undone” operation, copy, draw aline, draw arectangle, or
add text. The LIVE_IMAGE window may also be resized using the mouse.

Getting Started with IDL Using LIVE_IMAGE

82 Chapter 6: Image Processing

More Information on Image Processing

IDL offers much more in the area of Image Processing. To learn moreincluding some
of the new functionality added to IDL on image display and image processing, see
Using IDL.

More Information on Image Processing Getting Started with IDL

Chapter 7:

Surface and Contour

Plotting

This chapter describes the following topics:

IDL and Surface and Contour Plotting 84
Reading aDatasettoPlot 85
DisplayingaSurface 86
Displaying a Shaded Surface 88

Getting Started with IDL

DisplayingaContour 91
Plotting with SHOW3 96
Using LIVE_SURFACE for Plotting 97
More Information on 3-D Plotting 98

83

84 Chapter 7: Surface and Contour Plotting

IDL and Surface and Contour Plotting

IDL provides many techniques for visualizing two-dimensional arrays, including
contour plots, wire-mesh surfaces, and shaded surfaces. This chapter demonstrates
just afew of the commands for visualizing datain three dimensions.

Note
To simplify obtaining useful results from the examples in this manual, create a
bitmap buffer for your graphic windows and to use a maximum of 256 colors by
entering the following command at the IDL command prompt:

DEVI CE, RETAI N=2, DECOVPOSED=0

IDL and Surface and Contour Plotting Getting Started with IDL

Chapter 7: Surface and Contour Plotting 85

Reading a Dataset to Plot

First, we need to create atwo-dimensiona dataset to visualize. For these examples
we will use the binary dataset of the Maroon Bells mountains that we used in the
section “Reading and Writing Binary Data” on page 31. You will need to turn back to
that section to once again use the BINARY_TEMPLATE and READ_BINARY
functions to read this data set for use. Once you have read thefileinto IDL, you are
ready to move on to visualizing the data set three-dimensionally.

Getting Started with IDL Reading a Dataset to Plot

86 Chapter 7: Surface and Contour Plotting
Displaying a Surface

First, view the array MARBELLS_BINARY.A as athree-dimensional, “wire-mesh”
surface. Use the CONGRID procedure initialy to resample the data set so that the
“mesh” can be displayed at a size visible to the human eye.

1. Hereresamplethe array sizeto 35 by 45, or one tenth its original size. To do
this enter:

A=CONGRI D(MARBELLS_BI NARY. A, 35, 45)
2. Now we are ready to visualize the mesh using the SURFA CE command:
SURFACE, A

Figure 7-1: Surface plot with default angles

The SURFACE command can be used to view your data from different angles. AX
and AZ are plotting keywords that are used to control the SURFACE command. The
keyword AX specifies the angle of rotation of the surface (in degrees towards the
viewer) about the X axis. The AZ keyword specifies the rotation of the surfacein
degrees counterclockwise around the Z axis.

Displaying a Surface Getting Started with IDL

Chapter 7: Surface and Contour Plotting 87

3. View the array from a different angle by entering the following command:
SURFACE, A, AX = 70, AZ = 25

Vi

3

Figure 7-2: Surface plot showing different angles

Getting Started with IDL Displaying a Surface

88 Chapter 7: Surface and Contour Plotting

Displaying a Shaded Surface

You can also view atwo-dimensiona array as alight-source shaded surface.
1. First, load one of the pre-defined IDL color tables by entering:
LOADCT, 3

2. Toview the light-source shaded surface, shown in the following, simply enter
the command:

SHADE_SURF, A

Figure 7-3: Surface plot with light-source shaded

3. Tolook at the array from another angle, enlarge the label text, and add atitle.
Again, keywords are used to control certain features of the shaded surface plot.
The AX and AZ keywords control the viewing angle, just as they did with the
SURFACE command.

The CHARSIZE keyword controls the size of plotted text. The TITLE
keyword was used to add the title “ Shaded Surface Representation”.

SHADE_SURF, A, AX=45, AZ=20, CHARSI ZE=1.5, $
TI TLE=' Shaded Surface Representation'

Displaying a Shaded Surface Getting Started with IDL

Chapter 7: Surface and Contour Plotting 89

[Els
ot
ng»aseﬂ*
roS

5had¢d =

Amad

Figure 7-4: Surface plot with annotated surface plot

4. You can create adifferent kind of shaded surface, where the shading
information is provided by the elevation of each point. Now different shading
colors on the plot correspond to different elevations (the BY TSCL function
scales the data values into the range of bytes).

You could also specify a different array for the shading colors.
SHADE_SURF, A, SHADE=BYTSCL(A)

Figure 7-5: Byte-scaled surface plot

Getting Started with IDL Displaying a Shaded Surface

90 Chapter 7: Surface and Contour Plotting

5. You can plot awire-frame surface of the Maroon Bells (mountains) right over
theexisting plot. The XSTYLE, YSTYLE, and ZSTY LE keywords are used to
select different styles of axis. Here, SURFACE is set to not draw the X, Y, and
Z axis because they were already drawn by the SHADE_SURF command.

The /INOERA SE keyword allows the SURFACE plot to be drawn over the
existing SHADE_SURF plot. Enter the following:

SURFACE, A, XSTYLE=4, YSTYLE=4, ZSTYLE=4, /| NOERASE

Figure 7-6: Byte-scaled surface plot with an overlaid wire-frame

Displaying a Shaded Surface Getting Started with IDL

Chapter 7: Surface and Contour Plotting 91
Displaying a Contour

Another way to view atwo-dimensional array is as a contour plot. A simple contour
plot of the Data can be created.

1. Setthearray size back to itsorigina 350 by 450 size by entering:
A=MARBELLS_BI NARY. A

2. Plot the contour:
CONTOUR, A

5C0F T T T

400 -
300:— Q

foof

400

Figure 7-7: Contour plot

That command was very simple, but the resulting plot was not as informative
asit could be.

Getting Started with IDL Displaying a Contour

92 Chapter 7: Surface and Contour Plotting

3. Create a customized CONTOUR plot with more elevations and |abels by
entering:

CONTOUR, A, NLEVELS=8, C_LABELS=[0, 1]

5C0F T T T

400

Figure 7-8: Contour plot with elevation labeled

By using the NLEVELS keyword, CONTOUR was told to plot eight equally-
spaced elevation levels. The C_LABELS keyword specifies which contour
levels should be labeled. By default, every other contour is labeled.
C_LABELS alowsyou to override this default and explicitly specify the
levelsto label.

Displaying a Contour Getting Started with IDL

Chapter 7: Surface and Contour Plotting 93

4. Similarly, you can create afilled contour plot where each contour level isfilled
with adifferent color (or shade of gray) by setting the FILL keyword. To do
this, enter:

CONTOUR, A, NLEVELS=8, / FI LL

500 T T T

400

Figure 7-9: Contour plot with filled contour plot

5. To outline the resulting contours, make another call to CONTOUR and set the
OVERPLOT keyword to keep the previous plot from being erased.

You can add tickmarks that indicate the slope of the contours (the tickmarks
point in the downhill direction) by setting the DOWNHILL keyword:

CONTOUR, A, NLEVELS=8, / OVERPLOT, / DOWNHI LL

Getting Started with IDL Displaying a Contour

94 Chapter 7: Surface and Contour Plotting

500 T T T

400

Figure 7-10: Contour plot with downbhill tickmarks labeled

6. CONTOUR plots can be rendered from a three-dimensional perspective.
First, set up the default 3-D viewing angle by entering:
SURFR

7. By using the T3D keyword in the next call to CONTOUR, the contourswill be
drawn as seen from a 3-D perspective. Enter:

CONTOUR, A, NLEVELS=8, / T3D

Displaying a Contour Getting Started with IDL

Chapter 7: Surface and Contour Plotting 95

Figure 7-11: Contour plot with 3-D contour plot

Getting Started with IDL Displaying a Contour

96 Chapter 7: Surface and Contour Plotting

Plotting with SHOWS3

In addition to IDL’s built-in routines, there are many functions and procedures
included with IDL that are written in the IDL language and that can be changed,
customized, or even rewritten by IDL users. The SHOW3 procedure is one of these

routines.

1. Create aplot that shows atwo-dimensional array as an image, wire-frame
surface, and contour simultaneously.

SHOWB, A

Figure 7-12: Combined surface and contour plots using SHOW3

Plotting with SHOW3 Getting Started with IDL

Chapter 7: Surface and Contour Plotting 97

Using LIVE_SURFACE for Plotting

The LIVE_SURFACE procedure allows interactive manipulation using the mouse
and keyboard. Usually, LIVE_SURFACE is most suitable for relatively small data
sets since the interactive environment requires extra system resources.

After you execute LIVE_SURFACE, you can double-click on a section of the surface
to display a properties dialog. The buttons in the upper left of the image window
allow you many options (print, undo, redo, copy, line, rectangle, text and so on).

1. Here, to visualize a surface representation, enter the following:
LI VE_SURFACE, A

&l Live Surface [_ (O] %]

el lad Y AN ST

Figure 7-13: Visualization of surface representation using LIVE_SURFACE.

Getting Started with IDL Using LIVE_SURFACE for Plotting

98 Chapter 7: Surface and Contour Plotting

More Information on 3-D Plotting

The SURFACE, CONTOUR, and SHADE_SURF commands have many more
options that can be used to create even more complex, customized plots. For more
information on plotting multi-dimensional arrays, see Chapter 18, “Plotting Multi-

Dimensional Arrays’ in Using IDL and the documentation for specific routinesin the
IDL Reference Guide.

More Information on 3-D Plotting Getting Started with IDL

Chapter 8:

Volume Visualization

This chapter describes the following topics:

IDL and Volume Visualization 100
Reading in a Dataset for Visualization ... 101
3-D Transformations 102
Visualizing an Iso-Surface 104

Getting Started with IDL

Making Sliceswith the IDL Slicer
Displaying a Surface with the Slicer 108
More Information on Volume Visualization 110

99

100 Chapter 8: Volume Visualization

IDL and Volume Visualization

IDL can be used to visualize multi-dimensional volume datasets. Given a3-D grid of
density measurements, IDL can display a shaded surface representation of a constant-
density surface (also called an iso-surface). For example, in medical imaging
applications, a series of 2-D images can be created by computed tomography or
magnetic resonance imaging. When stacked, these images create a grid of density
measurements that can be contoured to display the surfaces of anatomical structures.

This chapter demonstrates the use of the SHADE_VOLUME and POLY SHADE
commands for iso-surface visualization.

Note
To simplify obtaining useful results from the examplesin this manual, create a
bitmap buffer for your graphic windows by entering the following command at the
IDL command prompt:

DEVI CE, RETAI N=2, DECOVPOSED=0

IDL and Volume Visualization Getting Started with IDL

Chapter 8: Volume Visualization 101

Reading in a Dataset for Visualization

The following stepsillustrate the use of BINARY _TEMPLATE and
READ_BINARY to read in a dataset:

1. First, create the template for reading the data. At the IDL Command Line,
enter:

MYTEMPLATE=BI NARY_TEMPLATE(FI LEPATH(' head. dat' , $
SUBDI R=[' exanpl es', 'data']))

The binary template dialog box appears.
2. Inthe Template Name field, enter “Head” as the name of the new template.

3. Now we are ready to enter the field values, click the box in the lower left
corner of the dialog box called “New Field”.

4. When the New/Modify Field dialog appears, enter “B” as the field name.
Check the box in the upper right corner marked “ Returned” sincewewill want
our data set returned at thetimeit isread.

At the “*Number of Dimensions’ pull-down menu, be sure to specify that we
are dealing with athree-dimensional data set. These data are contained in an 80
by 100 by 57 array, so we will enter these values in the three boxes marked
“size”.
Finally, let the binary template dialog know that we are dealing with Byte type
data by specifying “Byte (Unsigned 8-hits) at the “ Type” pull-down menu.
Onceyou have entered the above data, the binary template dialog appears once
again showing the specifications you have made.

5. Click “OK”.

Now we will use the READ_BINARY procedure to read the data defined by
template we have just created.

6. AtthelDL Command Line, enter:
HEAD_BI NARY=READ_ BI NARY(FI LEPATH(' head. dat ', SUBDI R=[' exanpl e
s',$
‘data']), TEMPLATEEMYTEMPLATE)

Getting Started with IDL Reading in a Dataset for Visualization

102 Chapter 8: Volume Visualization

3-D Transformations

When creating “3-D” plots (for example, surfaces, shaded surfaces, and volume
visualizations), a three-dimensional transformation needs to be set up. The 3-D
transformation applies the requested translation, rotation, and scaling to a 3-D plot
before displaying it.

Three-dimensional transformations are especially important when using the

POLY SHADE routine. Unlessthe transformation is set up such that the entire volume
isvisible, the volume will not be rendered correctly. Once a 3-D transformation has
been established, most IDL plotting routines can be made to useit by including the
T3D keyword.

There are a number of ways to set up atransformation matrix in IDL.

One way is that atransformation matrix can be entered explicitly into the system
variable !PT. This method is rather difficult, because you have to figure out the
transformation yourself. More information about the transformation matrix can be
found in Chapter 18, “Plotting Multi-Dimensional Arrays” of Using IDL.

Another method, isthe SURFACE and SHADE_SURF commands, which
automatically create a 3-D transformation based on the datasets being visualized.

1. For example, specify aslice of the data:
SLI CE=(HEAD_BI NARY. B) [*, *, 25]

2. Now surface the slice specified:
SURFACE, SLICE

3-D Transformations Getting Started with IDL

Chapter 8: Volume Visualization 103

:IDL D H[=] B3

Figure 8-1: Using SURFACE to visualize a slice of head.dat

A number of different IDL procedures that simplify the creation of 3-D
transformations can be used. Keyword arguments to some of these procedures allow
you to set viewing angles and data ranges. The procedures then create the appropriate
transformation matrix for you and storeit in !P.T. These procedures include T3D,
SCALE3, SCALE3D, and SURFR. For more information on these routines, consult
the IDL Reference Guide.

Getting Started with IDL 3-D Transformations

104 Chapter 8: Volume Visualization

Visualizing an Iso-Surface

Two IDL commands, SHADE_VOLUME and POLY SHADE, are used together to
visualize an iso-surface. SHADE_VOLUME generates alist of polygonsthat define
a 3-D surface given avolume dataset and a contour (or density) level. The function
POLY SHADE can then be used to create a shaded-surface representation of the iso-
surface from those polygons.

Like many other IDL commands, POLY SHADE accepts the T3D keyword that
makes POLY SHADE use a user-defined 3D transformation. Before you can use
POLY SHADE to render the final image, you need to set up an appropriate three-
dimensional transformation. The XRANGE, Y RANGE, and ZRANGE keywords
accept 2-element vectors, representing the minimum and maximum axis values, as
arguments.The POLY SHADE function returns an image based upon the list of
vertices, V, and list of polygons, P. The T3D keyword tells POLY SHADE to use the
previously-defined 3D transformation. The TV procedure displays the shaded-
surface image.

Enter the following lines:

1. Create the polygons and vertices that define the iso-surface with avalue of 70.
Return the vertices in V and the polygonsin P:

SHADE_VOLUME, HEAD_BI NARY. B, 70, V, P, / LOW
2. Set appropriate limitsfor the X, Y, and Z axes with the SCALE3 procedure:
SCALE3, XRANGE=[0, 80] , YRANGE=[0, 100] , ZRANGE=[0, 57]

Visualizing an Iso-Surface Getting Started with IDL

Chapter 8: Volume Visualization 105

3. Display a shaded-surface representation of the previously generated arrays of
vertices and polygons:

TV, POLYSHADE(V, P, / T3D)

Figure 8-2: Shaded-surface representation using POLYSHADE

Getting Started with IDL Visualizing an Iso-Surface

106 Chapter 8: Volume Visualization

Making Slices with the IDL Slicer

Another useful volume visualization tool isIDL's SLICERS procedure. The Slicer is

awidget-based application that allows you to create iso-surfaces and pass cutting
planes through 3-D datasets.

The IDL Slicer provides many other volume visualization techniques. As the name
implies, the slicer allows you to look at slices through a volume dataset.

1. Tousetheslicer with dataset B, it is first required to passin a pointer to the
data set by entering the following at the IDL Command Line:

BDATA=PTR_NEW HEAD_BI NARY. B)
2. Then enter:
SLI CER3, BDATA
3. ThelDL Slicer appears. The Slicer window will come up empty by default
though the datais |oaded. Be sure that the M ode pull-down menu is set to Slice
which is the default. Position the pointer within the cube. Hold down the left
mouse button and move the mouse. (In IDL for Macintosh, the mouse button is

interpreted as the left mouse button.) An outline of the cutting plane appears.
This plane moves only in the direction indicated by the orientation display.

Making Slices with the IDL Slicer Getting Started with IDL

Chapter 8: Volume Visualization 107

Move the cutting plane to the center of the volume and release the mouse
button. A cross-section of the volume is displayed.

@l IDL 3D Data Visualizer (Slicer3) [_ O]]
File Tools About

e T
Mode: | Slice =

@+ Draw Exposze

% Orthogonal

" Oblique

'x Oy CZ

Figure 8-3: IDL Slicer3
4. Tomakesdlicesin different orientations, move the cursor into the large drawing
window and press the right mouse button.

5. Tosimulate a right mouse button press, IDL for Macintosh users can hold
down the command key and click the mouse. The orientation display changes
to show the new direction of the cutting plane.

6. Click theright button a second time to see the third possible orientation.

7. Makesdlicesinthese orientations by clicking on the mouse button and dragging
the cutting plane outline to the desired location.

Getting Started with IDL Making Slices with the IDL Slicer

108 Chapter 8: Volume Visualization

Displaying a Surface with the Slicer

To display a surface with the IDL Slicer, do the following:

1. Tocreate asurfacein Slicer similar to the one you created previously at the
IDL command line, click on the Sur face option on the M ode pull-down menu
on the Slicer. A Surface Threshold window, a slider, and a number of new
buttons should appear.

2. Click inthe Surface Threshold and slide the determiner line to choose the
Display button. A status window reports on the number of vertices and
polygons generated and then the iso-surface appears.

@l IDL 3D Data Visualizer (Slicer3) [_ O]]
File Tools About

e T
Mode: | Suface | ™

Surface Threshold

‘f: Low " High

[Uightsource 7]

Dizplay

Figure 8-4: IDL Slicer3 with a surface

Displaying a Surface with the Slicer Getting Started with IDL

Chapter 8: Volume Visualization 109

Dismiss the Slicer and Volume Windows
When you are done experimenting with the Slicer, before continuing with other
chaptersin this book, you should dismiss the Slicer window.

1. To exit the volume window, enter the following at the Command Line:
WDELETE

2. ToexittheIDL Slicer, choose the path File - Quit.

Getting Started with IDL Displaying a Surface with the Slicer

110 Chapter 8: Volume Visualization

More Information on Volume Visualization

More information on the SHADE_VOLUME procedure can be found in Chapter 18,
“Plotting Multi-Dimensional Arrays’ of Using IDL. Also, see SCALES,
SHADE_VOLUME, and TV in the IDL Reference Guide.

A complete description of the dicer’s capabilitiesis beyond the scope of thistutorial.
Click the Slicer’'s Help button or see SLICERS in the IDL Reference Guide for more
information.

More Information on Volume Visualization Getting Started with IDL

Chapter 9:

Mapping

This chapter describes the following topics:

IDLandMapping 112
Drawing Map Projections 113
Drawing an Orthographic Projection 115
Plotting a Portion of the Globe 116
Plotting DataonMaps 117

Getting Started with IDL

Reading Latitudes and Longitudes 119
Plotting Contours Over Maps 120
Warping ImagestoMaps 122
More Information on Mapping 127

111

112 Chapter 9: Mapping

IDL and Mapping

IDL’s mapping facilitiesallow you to plot data over different projections of the globe.
This chapter shows how to display various map projections and plot data over them.

In this chapter, we will enter statements at the IDL Command Input Line. This
demonstrates | DL's interactive capability, and shows how easy it is to manipul ate
your data.

Note
To simplify obtaining useful results from the examples in this manual, create a
bitmap buffer for your graphic windows and to use a maximum of 256 colors by
entering the following command at the IDL command prompt:

DEVI CE, RETAI N=2, DECOVPOSED=0

IDL and Mapping Getting Started with IDL

Chapter 9: Mapping 113

Drawing Map Projections

Drawing continental outlines and plotting datain different projectionsis easy using
IDL’s mapping routines. The MAP_SET routine is the heart of the mapping package.
It controls the type of projection and the limits of the global region to be mapped.

1. Reset the graphics window to default size:
W NDOW

2. Display acylindrica projection map of the world:
MAP_SET, / CYLI NDRI CAL, / GRI D, / CONTI NENTS, / LABEL

Figure 9-1: A cylindrical projection

The CYLINDRICAL keyword tellsMAP_SET to use the cylindrical
projection. The GRID keyword causes the latitude and longitude lines to be
drawn. The LABEL keyword adds the |atitude and longitude |abels. The
CONTINENTS keyword tellsMAP_SET to draw continental outlines.

A similar map could be created by entering a series of separate commands to
set up the type of projection, draw the continent outlines, and then draw the
grid lines.

Although the single-line MAP_SET command is quicker to enter, by using the
separate MAP_SET, MAP_GRID, and MAP_CONTINENTS commands, you
exercise more control over the map colors, fills, and so on.

Getting Started with IDL Drawing Map Projections

114 Chapter 9: Mapping

3. Load anew color table.
LOADCT, 39

4. Display aMiller cylindrical projection of the world.
MAP_SET, /M LLER

5. Draw the continent outlines. The FILL keyword fillsin the continents using
the color specified by the COLOR keyword.

MAP_CONTI NENTS, COLOR=220, / FI LL

6. Draw thegridlines. The COLOR keyword specifies the color of the grid lines.
The LABEL keyword labels the lines.

MAP_GRI D, COLOR=160, /LABEL

Figure 9-2: Miller cylindrical projection with MAP_CONTINENTS and
MAP_GRID

The order of MAP_GRID and MAP_CONTINENTS depends on how you
wish to display your map. In the above example, if you cal MAP_GRID
before MAP_CONTINENTS, thefilled continents are drawn over the labeled
grid lines.

7. Dismiss the graphics window:
WDELETE

Drawing Map Projections Getting Started with IDL

Chapter 9: Mapping 115

Drawing an Orthographic Projection

To draw amap that looks more like a globe, use the orthographic projection.
1. Open agraphicswindow for viewing:
W NDOW
2. Enter the following at the Command Line:

MAP_SET, 30, - 100, 0, / ORTHOGRAPHI C, / | SOTROPI C, / GRID, $
/ CONTI NENTS, / LABEL, / HORI ZON

Figure 9-3: Orthographic projection showing North America at the center

The numbers following the MAP_SET command (30, -100, and 0) are the
latitude and longitude to be centered and the angle of rotation for the North
direction. The ISOTROPIC keyword creates amap that has the same scalein
the vertical and horizontal directions, so we get acircular map in a rectangular
window. IDL keywords (but not function and procedure names) can always be
abbreviated to their minimum unique length. The GRID, COLOR, and LABEL
keywords work the same as before. The HORIZON keyword draws the line at
which the horizon exists. Without the HORIZON keyword, MAP_SET only
draws the grid and the continents.

3. Dismiss the graphics window:
WDELETE

Getting Started with IDL Drawing an Orthographic Projection

116 Chapter 9: Mapping

Plotting a Portion of the Globe

You do not always have to plot the entire globe, you can plot a section of the globe by
using the LIMIT keyword which specifies aregion of the globe to plot.

1. Open agraphics window for viewing:
W NDOW
2. Enter the following at the Command Line:

MAP_SET, 32, - 100, / AZI M LI M T=[10, -130, 55, -70], $
/ GRI D, / CONT, / LABEL

—ag

Figure 9-4: Azimuthal equidistant projection

The azimuthal equidistant projection showsthe United States and Mexico. The
AZIM keyword selects the azimuthal equidistant projection. The keyword
LIMIT isset equa to afour-element vector containing the minimum latitude,
minimum longitude, maximum latitude, and maximum longitude.

3. Dismiss the graphics window:
WDELETE

Plotting a Portion of the Globe Getting Started with IDL

Chapter 9: Mapping 117

Plotting Data on Maps

You can annotate plotseasily in IDL. To plot the location of selected citiesin North
America, as shown in the following figure, you need to create three arrays. one to
hold latitudes, one to hold longitudes, and one to hold the names of the cities being
plotted.

1.

Open a graphics window for viewing:
W NDOW

Create a 5-element array of floating-point values representing latitudesin
degrees North of zero.

LATS=[40. 02, 34. 00, 38. 55, 48. 25, 17. 29]

The vauesin LONS are negative because they represent degrees West of zero
longitude.

LONS=[- 105. 16, - 119. 40, - 77. 00, - 114. 21, - 88. 10]

Create afive-element array of string values. Text strings can be enclosed in
either single quotes (‘text") or double quotes ("text").

CI TI ES=[' Boul der, CO,'Santa Cruz, CA' ,$
"Washington, DC ,'Witefish, MI",'Belize, Belize']

Draw a Mercator projection featuring the United States and Mexico.
MAP_SET, /MERCATCR, /GRI D, /CONTI NENT, LI M T=[10, - 130, 60, - 70]
Place a plotting symbol at the location of each city.
PLOTS, LONS, LATS, PSYM=4, SYMSI ZE=1. 4, COLOR=220

Getting Started with IDL Plotting Data on Maps

118 Chapter 9: Mapping

7. Place the names of the cities near their respective symboals.

XYOUTS, LONS, LATS, CI TI ES, COLOR=80, $
CHARTHI CK=2, CHARSI ZE=1. 25, ALI G\=0. 5

e "J'."h'i't'éfi';'l"l'.' NT ...

Figure 9-5: Annotating a map projection

The PSYM keyword makes PLOT S use diamond-shaped plotting symbols instead of
connecting lines. The SYMSIZE keyword controls the size of the plotting symbals.
XYOUTS draws the characters for each element of the array CITIES at the
corresponding location specified by the array elements of LONS and LATS. The
CHARTHICK keyword controls the thickness of the text characters and the
CHARSIZE keyword controls their size (1.0 is the default size). Setting the ALIGN
keyword to 0.5 centers the city names over their corresponding data points.

Plotting Data on Maps Getting Started with IDL

Chapter 9: Mapping 119

Reading Latitudes and Longitudes

If amap projection is displayed, IDL can return the position of the cursor over the
map in latitude and longitude coordinates.

1. Enter the command:
CURSOR, LON, LAT & PRI NT, LAT, LON

The CURSOR command reads the “X” and “Y" positions of the cursor when the
mouse button is pressed and returns those valuesin the LON and LAT variables. Use
the mouse to move the cursor over the map window and click on any point. The
latitude and longitude of that point on the map are printed in the Output L og.

2. When you arefinished with your map, dismiss the graphics window:
WDELETE

Getting Started with IDL Reading Latitudes and Longitudes

120 Chapter 9: Mapping

Plotting Contours Over Maps

Contour plots can easily be drawn over map projections by using the OVERPLOT
keyword to the CONTOUR routine. See the map in the figure below. Enter the
following at the Command Line:

1. Open agraphicswindow for viewing:
W NDOW

2. Create adataset to plot:
A=DI ST(91)

3. Create an X value vector containing 91 values that range from -90 to 90 in 2
degree increments:

LAT=FI NDGEN(91) * 2- 90

4. Createa value vector containing 91 values that range from -180 to 180 in 4
degree increments:

LON=FI NDGEN(91) * 4- 180

5. Create anew sinusoidal map projection over which to plot the data:
MAP_SET, / GRI D, / CONTI NENTS, / SI NUSOI DAL, / HORI ZON

6. Draw atwelve-level contour plot of array A over the map:
CONTOUR, A, LON, LAT, / OVERPLOT, NLEVELS=12

Plotting Contours Over Maps Getting Started with IDL

Chapter 9: Mapping 121

Figure 9-6: Plotting contours over maps

Since latitudes range from -90 to 90 degrees and longitudes range from -180 to 180
degrees, you created two vectors containing the “X” and “Y” values for CONTOUR
tousein displaying the array A. If the X and Y vaues are not explicitly specified,
CONTOUR will plot the array A over only asmall portion of the globe.

7. When you are finished with the map, dismiss the graphics window:
WDELETE

Getting Started with IDL Plotting Contours Over Maps

122

Chapter 9: Mapping

Warping Images to Maps

Image data can aso be displayed on maps. The MAP_IMAGE function returns a
warped version of an original image that can be displayed over amap projection. In
this example, elevation data for the entire globe is displayed as an image with
continent outlines and grid lines overlaid.

1.

Define the template for the file worldelv.dat. This file contains a 360 by 360
square array of byte values.

WORLDTEMPLATE=BI NARY_TEMPLATE(FI LEPATH(' wor| del v.dat', $
SUBDI R=[' exanpl es', 'data']))

When the binary template dialog box appears, name the template
“WORLDTEMPLATE" and then click New Field.

Inthe New Field dialog, enter “W” for the Field Name, be sure to specify that
you have two dimensions and that the field sizes are 360 and 360.

Also select Byte (unsigned) in the Typefield. Now click OK intheNew Field
dialog. Click “OK” to close the binary template dialog as well. Next, read the
file by entering:

WORLDELV_BI NARY=READ BI NARY(FI LEPATH(' wor | del v. dat', $
SUBDI R=[' exanpl es', 'data']), TEMPLATE=WORLDTEMPLATE)

Load acolor table.
| oadct, 26
View the data as an image.
TV, WORLDELV_BI NARY. W

Warping Images to Maps Getting Started with IDL

Chapter 9: Mapping 123

Figure 9-7: worldelv.dat visualized with TV

The first column of datain thisimage corresponds to O degrees longitude.
Because MAP_IMAGE assumes that the first column of the image being

warped corresponds to -180 degrees, we'll use the SHIFT function on the
dataset before proceeding.

7. Shift the array 180 elementsin the row direction and O elementsin the column
direction to make -180 degrees the first column in the array.

WORLDELV_BI NARY. WESHI FT(WORLDELV_BI NARY. W 180, 0)
8. View the data as an image.
TV, WORLDELV_BI NARY. W

Getting Started with IDL Warping Images to Maps

124

10.

11.

Chapter 9: Mapping

Figure 9-8: Shifting the array

From the image contained in the data, we can create a warped image to fit any
of the available map projections. A map projection must be defined before
using MAP_IMAGE, because MAP_IMAGE uses the currently defined map
parameters.

Create a Mollweide projection with continents and gridlines.
MAP_SET, / MOLLVEI DE, / CONT, / GRI D, COLOR=100

Warp the image using bilinear interpolation and save the result in the variable
new.

NEWEMAP_| MAGE(WORLDELV_BI NARY. W SX, SY, / Bl LI N)

The SX and SY in the command above are output variables that contain the X
and Y position at which the image should be displayed. Setting the BILIN
keyword causes bilinear interpolation to be used, resulting in a smoother
warped image.

Display the new image over the map:
TV, NEW SX, SY

Warping Images to Maps Getting Started with IDL

Chapter 9: Mapping 125

Figure 9-9: Warping an image to a map

The SX and SY variables provide TV with the proper starting coordinates for

the warped image. TV usualy displays images starting at position (0, 0). See

the map in the previous figure. Note that the warped image gets displayed over
the existing continent and grid lines.

12. The continent outlines and thick grid lines can be displayed, as shown next, by
entering:

MAP_CONTI NENTS
MAP_GRI D, GLI NETHI CK=3

Getting Started with IDL Warping Images to Maps

126 Chapter 9: Mapping

Figure 9-10: Showing gridlines and continents

Warping Images to Maps Getting Started with IDL

Chapter 9: Mapping 127

More Information on Mapping

More information on the IDL mapping routines can be found in Using IDL and in the
IDL Reference Guide.

Getting Started with IDL More Information on Mapping

128 Chapter 9: Mapping

More Information on Mapping Getting Started with IDL

Chapter 10:

Plotting Irregularly-
Gridded Data

This chapter describes the following topics:

IDL and Plotting Irregularly-Gridded Data 130 Plotting the Resultswith TRIGRID 135
CreatingaDataset 131 Morelnformation on Gridding 137
The TRIANGULATE Procedure 133

Getting Started with IDL 129

130 Chapter 10: Plotting Irregularly-Gridded Data

IDL and Plotting Irregularly-Gridded Data

IDL can be used to display and analyze irregularly-gridded data. IDL routines allow
you to easily fit irregularly-sampled datato aregular grid. This regularly-gridded
data can then be sent to IDL’s plotting routines. In this chapter, we will see how easy
it isto manipulate your irregularly-gridded data.

Note
To simplify obtaining useful results from the examplesin this manual, create a

bitmap buffer for your graphic windows and to use a maximum of 256 colors by
entering the following command at the IDL command prompt:

DEVI CE, RETAI N=2, DECOVPOSED=0

IDL and Plotting Irregularly-Gridded Data Getting Started with IDL

Chapter 10: Plotting Irregularly-Gridded Data 131

Creating a Dataset

Create a set of 32 irregularly-gridded data pointsin 3-D space that we can use as
arguments to the TRIGRID and TRIANGULATE functions.

1.

Open awindow for viewing:
W NDOW

Set SEED to the longword value 1. SEED is used to generate random points.
SEED=1L

Set the number of pointsto be randomly generated.
N=32

Create a set of X valuesfor each of the 32 data points.
X=RANDOMJ(SEED, N)

Create a set of Y valuesfor each of the 32 data points.
Y=RANDOMJ(SEED, N)

Create aset of Z values for each of the 32 datapointsfrom the X and Y values.
Z=EXP(- 3* ((X-0.5)"2+(Y-0.5)"2))

Getting Started with IDL Creating a Dataset

132 Chapter 10: Plotting Irregularly-Gridded Data

7. Plot the XY positions of the random points.
PLOT, X, Y, PSYM=1, TI TLE=' Random XY Poi nts'

Randem XY Paints
1.0 T T ¥ T

+ +

08

06

0.2

0.0 I 1 | 1 1

P I

[N H] 0.2 0.4 0.6 0.8

Figure 10-1: Plot of random values

8. Dismiss the graphics window:
WDELETE

Creating a Dataset

Getting Started with IDL

Chapter 10: Plotting Irregularly-Gridded Data 133

The TRIANGULATE Procedure

The TRIANGULATE procedure constructs a Delaunay triangulation of a planar set
of points. After atriangulation has been found for a set of irregularly-gridded data

points, the TRIGRID function can be used to interpolate surface valuesto aregular
grid.

1. Open awindow for viewing:
W NDOW

2. Toreturn atriangulation in the variable TR, enter the command:
TRI ANGULATE, X, Y, TR
The variable TR now contains a three-element by 54-element longword array
(you may seethisby typing “Hel p, TR’ at the IDL Command Line).
Note
Thisis not always a 54-element array, it may vary based on the number of points.

3. To produce aplot of the triangul ation, shown below, enter the following
commands:

PLOT, X, Y, PSYM=1, TI TLE=' Tri angul ati on'

FOR i =0, N.ELEMENTS(TR)/3 - 1 DOBEGIN & T= $
[TRI*, i],TRIO, i]] & PLOTS, X[T],Y[T] & ENDFOR

Getting Started with IDL The TRIANGULATE Procedure

134 Chapter 10: Plotting Irregularly-Gridded Data

Figure 10-2: The triangulation of the random values

4. Dismiss the graphics window
WDELETE

The TRIANGULATE Procedure Getting Started with IDL

Chapter 10: Plotting Irregularly-Gridded Data 135

Plotting the Results with TRIGRID

Now that we have the triangulation TR, the TRIGRID function can be used to return
aregular grid of interpolated Z values.

1. Display asurface plot of the gridded data by passing the result of the
TRIGRID function to SURFACE, using the default interpolation technique
and add atitle to the plot, shown below, by entering:

SURFACE, TRIGRI D(X, Y, Z, TR)
XYOUTS, . 5,.9,"' Linear Interpolation', ALI G\=. 5, / NORVAL

Lirear Interpalation

Figure 10-3: Linear interpolation of triangulated data
The TRIGRID function can also return a smoothed interpolation. Set the

QUINTIC keyword to use a quintic polynomia method when interpolating the
grid.

Getting Started with IDL Plotting the Results with TRIGRID

136 Chapter 10: Plotting Irregularly-Gridded Data

2. Display the results of the quintic gridding method, shown below, by entering:

SURFACE, TRIGRI D(X, Y, Z, TR,/ QUI NTI C XYOUTS, .5,.9, Quintic
I nt erpol ation', ALI GN=. 5, / NORMAL

Cuindic Interpalation

Figure 10-4: Quintic interpolation of triangulated data

Plotting the Results with TRIGRID Getting Started with IDL

Chapter 10: Plotting Irregularly-Gridded Data 137

More Information on Gridding

More information on the TRIGRID and TRIANGULATE routines as well as other
triangulation routines, can be found in the IDL Reference Guide.

Getting Started with IDL More Information on Gridding

138 Chapter 10: Plotting Irregularly-Gridded Data

More Information on Gridding Getting Started with IDL

Chapter 11:
Animation

This chapter describes the following topics:

IDL and Animation 140 Animation with XINTERANIMATE 146
Animating aSeriesof Images 141 Cleaning Up the Animation Windows ... 148
Displaying an Animation asaWire Mesh . 143 More Information on Animation 149

Getting Started with IDL 139

140 Chapter 11: Animation

IDL and Animation

IDL can help you visualize your data dynamically by using animation. An animation
isjust a series of still frames shown sequentially. In IDL, a series of frames can be
represented by a 3-D array (for example, a 3-D array could hold forty, 300 pixel by
300 pixel images). This chapter shows you how to create an array of images and play
them back as an animated sequence.

Note
To simplify obtaining useful results from the examples in this manual, create a
bitmap buffer for your graphic windows and to use a maximum of 256 colors by
entering the following command at the IDL command prompt:

DEVICE, RETAIN=2, DECOMPOSED=0

IDL and Animation Getting Started with IDL

Chapter 11: Animation 141

Animating a Series of Images

To create an animation that shows a series of images that represent an abnormal
heartbeat, first read in the images to be displayed. The file holds 16 images of a
human heart as 64 by 64 element arrays of bytes.

1. Enter the following commands at the IDL Command Line:

HEARTTEMPLATE=BI NARY_TEMPLATE(FI LEPATH(' abnorm dat' , $
SUBDI R=[' exanpl es', 'data']))

2. When the binary template dialog box appears, name the template “ Animation”
and then click New Field.

3. Enter “H” for the Field Name, be sure to specify that you have three
dimensions and that the sizes are 64, 64 and 16.

4. Also select Bytein the Type field. Now click OK for both open dialogs.

Next, read the images into variable HEART_BI NARY:

HEART_BI NARY=READ Bl NARY(FI LEPATH(' abnorm dat', SUBDI R= $
['exanples', 'data']), TEMPLATE=HEARTTEMPLATE)

6. Load an appropriate color table:
LOADCT, 3

7. Display thefirst “slice” of our 3-D array:
TV, HEART_BI NARY. H *, *, 0]

The asterisks (*) in the first two element positionstell IDL to use al of the
elements in those positions. Hence, the TV procedure displays a 64 by 64 byte
image. Theimage is rather small.

8. Now resize each image in the array with bilinear interpolation by entering:
H=REBI N(HEART_BI NARY. H, 320, 320, 16)
9. Thendisplay:
TV, H*, *, 0]
Each imagein H is5timesits previous size.

Now asimple FOR statement can be used to “animate” the images. (A more
robust and convenient animation routine, XINTERANIMATE, is described
next.)

10. To animate, enter:

Getting Started with IDL Animating a Series of Images

142 Chapter 11: Animation

FOR 1=0,15 DO TVSCL, H *, *,i]

Figure 11-1: Representation of an abnormal heartbeat

IDL displaysthe 16 imagesin the array H sequentially. To repeat the animation, press
the “up arrow” key to recall the command and press enter.

Note
If the IDLDE screen covers and existing IDL window, you may want to delete the
current IDL window before recalling the FOR statement in order to clearly see the
animation.

11. Dismiss the window:
VDELETE

Animating a Series of Images Getting Started with IDL

Chapter 11: Animation 143

Displaying an Animation as a Wire Mesh

The same series of images can be displayed as different types of animations. For
example, each frame of the animation could be displayed as a SURFA CE plot.

1. Create anew array to hold the heartbeat data:
S=REBI N(HEART_BI NARY. H, 32, 32, 16)

Snow holds 32 byte by 32 byte versions of the heartbeat images. SURFACE
plots are often more legible when made from aresized version of the dataset
with fewer data pointsin it.

2. Display thefirstimagein S as awire-mesh surface by entering:
SURFACE, S[*, *, 0]

w50

Figure 11-2: Surface visualization of heartbeat data
Now create a whole series of SURFACE plots, one for each image in the
original dataset.

3. Todo this, first create athree-dimensional array to hold al of the images by
entering:

FRAMES=BYTARR(300, 300, 16)
The variable frames will hold sixteen, 300 by 300 byte images.

Getting Started with IDL Displaying an Animation as a Wire Mesh

144 Chapter 11: Animation

4. Now create a 300 by 300 pixel window in which to display the images:
W NDOW 1, TI TLE=' | DL Ani mati on', xsi ze=300, ysi ze=300
A blank IDL Animation screen will appear.

The next command will draw each frame of the animation. A SURFACE plot
isdrawn in the window and then the TVRD function is used to read the image
from the plotting window into the frames array. The FOR loop is used to
increment the array indices. The lines which follow are actually asingle IDL
command. The dollar sign ($) works as a continuation character in IDL and the
ampersand (&) allows multiple commandsin the sameline.

5. Enter:

FOR 1 =0, 15 DO BEG N SURFACE, S[*, *, i | , ZRANGE=[0, 250] $
& FRAVES[0, 0, i] =TVRD() &END

You should see a series of SURFACE plots being drawn in the animation
window, as shown in below. The ZRANGE keyword is used to keep the
“height” axisthe same for each plot.

6. Now display the new images in series by entering:
FOR 1=0,15 DO TV, FRAMES] *, *, i]

1 IDL Animation =] E3

750

i

Figure 11-3: One of the SURFACE plots of the animation window

Displaying an Animation as a Wire Mesh Getting Started with IDL

Chapter 11: Animation 145

Note
Onceagain, if the IDLDE screen covers and existing IDL window, you may want to
delete the current IDL window before recalling the FOR statement in order to clearly
see the animation.

Getting Started with IDL Displaying an Animation as a Wire Mesh

146 Chapter 11: Animation

Animation with XINTERANIMATE

IDL includes a powerful, widget-based animation tool called XINTERANIMATE.

Sometimesit is useful to view a single wire-mesh surface or shaded surface from a
number of different angles. Let's make a SURFACE plot from one of the S dataset

frames and view it rotating through 360 degrees. by entering:

1. Savethefirst frame of the S dataset in the variable A to simplify the next set of
commands:

A=S[*,*, 0]

2. Create awindow in which to display your surface:
W NDOW 0, XSI ZE=300, YSI ZE=300

3. Display A asawire-mesh surface:
SURFACE, A, XSTYLE=4, YSTYLE=4, ZSTYLE=4

Setting the XSTYLE, YSTYLE, and ZSTY LE keywords equal to 4 turns axis
drawing off. Usually, IDL automatically scales the axes of plotsto best display
all of the data points sent to the plotting routine. However, for this sequence of
images, it is best if each SURFACE plot isdrawn with the same size axes. The
SCALE3 procedure can be used to control various aspects of the three-
dimensional transformation used to display plots.

4. ForcetheX and Y axisrangesto run from O to 32 and the Z axis range to run
from O to 250:

SCALES3, XRANGE=[0, 31] , YRANGE=[0, 31] , ZRANGE=[0, 250]

5. Set up the XINTERANIMATE routine to hold 40, 300 by 300 byte images:
XI NTERANI MATE, SET=[300, 300, 40], / SHOALOAD

6. Return focusto the plot window for the SURFACE calls which follow.
WSET, 0

7. Generate each frame of the animation and store it for the XINTERANIMATE
routine. Once a 3-D transformation has been established, most IDL plotting
routines can be made to use it by including the T3D keyword. The
[XYZ]STYLE keywords are shortened to [XY Z] ST:

FOR 1=0,39 DO BEG N SCALE3, AZ= -i * 9 & SURFACE A $
/ T3D, XSTYLE=4, YSTYLE=4, ZSTYLE=4 & Xl NTERANI MATE, $
FRAVE=l , WN=0 & END

Animation with XINTERANIMATE Getting Started with IDL

Chapter 11: Animation 147

8. Play images back as an animation after all the images have been saved in the
XINTERANIMATE routine:

XI NTERANI VATE

&l XInterAnimate

@l & 2|

Animation Speed:

IS[=] E3

Frames/Sec: 264.1
Kl |
Animation Frame:

]
K| o

™ Active Slider

End &nimation
Calars...

‘wirite MPEG

Help

Figure 11-4: The XINTERANIMATE window

The XINTERANIMATE window should appear, as shown above. “ Tape recorder”
style controls can be used to play the animation forward, play it backward, or stop.
Individual frames can also be selected by moving the “ Animation Frame” dider. The
“Options” menu controls the style and direction of image playback. Click on “End
Animation” when you are ready to return to the IDL Command Line.

Getting Started with IDL Animation with XINTERANIMATE

148 Chapter 11: Animation

Cleaning Up the Animation Windows

Before continuing with the rest of the tutorials, del ete the two windows you used to
create the animations. The WDELETE procedure is used to delete IDL windows.

1. Delete both window 0 and window 1 by entering:

WDELETE, O
WDELETE, 1

Cleaning Up the Animation Windows Getting Started with IDL

Chapter 11: Animation 149

More Information on Animation

With just afew IDL commands, you' ve created a number of different types of
animation. For alist of other animation related commands, seethe IDL Reference
Guide.

Getting Started with IDL More Information on Animation

150 Chapter 11: Animation

More Information on Animation Getting Started with IDL

Chapter 12:
Programming in IDL

This chapter describes the following topics:

IDL and Programming 152 Debugging ToolsinIDL 158
Programming Capabilitiesinthe IDLDE . 153 UsngIDL Projects.................. 160
Executing a Simple IDL Example Program 155 More Information on IDL Programming . 162

Getting Started with IDL 151

152 Chapter 12: Programming in IDL

IDL and Programming

IDL has acomplete set of program control statements to write sophisticated programs
and applications. These control statements are similar to, if not identical to, those
found in other programming languages. This chapter demonstratesjust some of IDL's

basic programming capabilities.

Note
For best performance when using these examples, create a bitmap buffer for your

graphic windows and to use a maximum of 256 colors by entering the following
command at the IDL command prompt:

DEVI CE, RETAI N=2, DECOVPOSED=0

IDL and Programming Getting Started with IDL

Chapter 12: Programming in IDL 153

Programming Capabilities in the IDLDE

IDL offersyou the ability to program applications with ease. The term “I1DL
Application” isused very broadly; any program written in the IDL languageistreated
asan IDL application. IDL applications range from the very smple (aMAIN
program entered at the IDL command line, for example) to the very complex (large
programs with graphical user interfaces). Whether you are writing asmall program to
analyze asingle data set or alarge-scale application for commercial distribution, it is
useful to understand the programming concepts used by the IDL language. IDL even
allowsyouto call IDL from other programs written in other languages and call other
programs from IDL.

Built-In Editor

The IDL Editor is a programmer’s-style editor—if you indent a line using the Tab
key, the following lines will be indented as well. Use the Shift-Tab key to move | eft
one tab stop. You can move the cursor position within an IDL Editor window using
either the mouse or the keyboard. IDL Editor window key definitions are listed in
Using IDL.

Chromacoded editor

On IDL for Windows, the IDL Editor supports chromacoding—different types of
IDL statements appear in different colors. By default, the IDL Editor uses chroma-
coding. The Editor tab from Preferencesin the File menu displays the colors used
for different words recognized by IDL. Change the Foreground color to change the
color of the word itself. Highlight the word by specifying the Background color.

Types of IDL Programs

Main Program

A main program unit consists of a sequence of IDL statementsthat end in an END
statement. Only one main program unit may exist in IDL at any time. All commands
(except executive statements) that can be entered at the IDL Command Line can also
be contained in an IDL program.

Procedure

A procedure is a self-contained sequence of IDL statements that performs awell-
defined task. A procedureisidentified by a procedure definition statement where the

Getting Started with IDL Programming Capabilities in the IDLDE

154 Chapter 12: Programming in IDL

procedure name is the name of the IDL statement you are creating and the parameters
are named variables that are used in the procedure.

Function

A function is a self-contained sequence of IDL statements that performs a well-
defined task and returns a value to the calling program unit when it is executed. All
functions return a function value which is given as a parameter in the RETURN
statement used to exit the function.

Compound Statements
« BEGIN...END
Conditional Statements

* |F..THEN ... ELSE
« CASE
* SWITCH

Loop Statements

* FOR..DO
* WHILE..DO
* REPEAT..UNTIL

Jump Statements

» BREAK

» CONTINUE

« GOTO
Note

For more information about these IDL statements, see Chapter 12, “Program
Control” in Building IDL Applications.

Programming Capabilities in the IDLDE Getting Started with IDL

Chapter 12: Programming in IDL 155

Executing a Simple IDL Example Program

To show IDL’s programming capabilities, enter a program here which will remove
the bridges from the image of Manhattan Island in New York City using IDL’s
erosion and dilation power.

1.

From the IDLDE, open anew IDL Editor window by selecting File - New -
Editor (or for Macintosh, simply File -~ New).

Type (or copy) the following lines of code into the new Editor window to form
a program:

pro renmove_bridges
; Read an image of New York.
Xsize = 768 ; pixels.
ysize = 512 ; pixels.
ing = read_binary($
filepath(' nyny.dat', subdir=['exanples', 'data']), $
dat a_di ms=[xsi ze, ysize])
;I ncrease image's contrast.
i mg = bytscl (ing)
; Create an i mage nask fromthreshol ded i nage.
threshold_level = 70 ; determ ned enpirically.
mask = ing It threshold_| eve

; Make a di sk-shaped "structuring el ement."

disk_size = 7 ; determined enpirically.

se shift(dist(disk_size), disk_size / 2, disk_size /| 2)
se se le disk_size / 2

; Remove details in the mask's shape.

mask = dil at e(er ode(mask, se), se)

; Fuse gaps in the mask's shape.

mask = erode(dil ate(mask, se), se)

; Remove all but the largest region in the mask.

| abel _i ng = | abel _regi on(nask)

| abel s = | abel _i ng[where(l abel _ing ne 0)] ; Renove
backgr ound.

| abel = where(histogran(label _ing) eq max(histogran(l abels)))
mask = | abel _ing eq | abel [0]

; Generate a new i nage consi sting of |ocal area m ninmns.
new_ i mg = dilate(erode(ing, se, /gray), se, /gray)

Getting Started with IDL Executing a Simple IDL Example Program

156 Chapter 12: Programming in IDL

; Repl ace new i mage with origi nal inmage, where not masked.
new_i ng[where(mask eq 0)] = i ng[where(mask eq 0)]

;View result, conparing the new inage with the original.
print, "Ht any key to end program'

wi ndow, Xsize=xsize, ysize=ysize

flick, inmg, new_ing

wdel et e

end

Note
Semicolons (;) in IDL code are indicators of the beginning of comment lines, which

explain what the actual code lines are doing and/or to help you understand your
code (while being ignored by IDL itself).

Note
The dollar sign ($) at the end of thefirst lineisthe IDL continuation character. It

allowsyou to enter long IDL commands as multiple lines.

Note
For the current settings for the various colors represented in the chromacoded editor
goto File - Preferences and then select the Editor tab (on Macintosh, select File
- Preferences - Syntax Coloring.

Saving, Compiling and Running your Program

Now to see the program in action, IDL requires afew more simple steps.

1. Savethefile asremove_bridges.pro by selecting File » Save Asand then
entering “remove_bridges.pro”.

2. Compilethe program by selecting Run — Compile remove_bridges.pro (or
on Macintosh, smply Run - Compile).

Executing a Simple IDL Example Program Getting Started with IDL

Chapter 12: Programming in IDL 157

3. Runthe program by selecting Run - Run remove_bridges.pro (or for
Macintosh, simply Run — Run). You'll see the following:

"
B IDL #IDL-WIN - Evaluation Purposes Only [= B3
Fle Edt Seach Aun Project Macos Window Help

BOEH 2CimBa B2
HJew sic B8 BANEES
2 o b)) 4

€1 NoProject Open

&3 C:\RSI\DL53\remove_bridges. pro =13

Tro remove bridgss =

‘Read an imags of Hew York

xsize = 78 : pizels
ysize = G12 | pizels.

ing -]
{'nyny dat', subdir=['szamples’, ‘data']), %
data_dims-[xsize, ysize])

Increase image's contrast

ing = bwtscllina)

Groups [Buld C g
3

. :\LDEE\S

ELE. ;

Ready

Figure 12-1: Running your IDL Program

Note
If your program encounters an error in running be sure to double check your code
for typographical errors.

Getting Started with IDL Executing a Simple IDL Example Program

158 Chapter 12: Programming in IDL

Debugging Tools in IDL

Many features are included to help you debug your IDL programs. These features are
discussed in the following sections:

Breakpoints
Thisallows you to set pointsin your program to stop the execution of the program.

You can then check the value of variables at those points to see what is happening in
your program and then continue execution of the program.

£/ Module | Line | File | Atter | One| Condition
4 O

Add

Figure 12-2: Complex Breakpoint Dialog

Variable Watch window

Thiswindow displays current variable values after IDL has completed execution. If
the calling context changes during execution — as when stepping into a procedure or
function — the variable table is replaced with atable appropriate to the new context.

While IDL isat the main program level, the Watch window remains active and
displays any variables created.

[Twe | Vale
FLOAT Bnal100]

Figure 12-3: Variable Watch Window

Debugging Tools in IDL Getting Started with IDL

Chapter 12: Programming in IDL

The IDL Code Profiler

159

The IDL Code Profiler helps you analyze the performance of your applications. You
can easily monitor the calling frequency and execution time for procedures and
functions. The Profiler can be used with programs entered from the command line as

well as programs run from within afile.

™ ANl User Modules

Proleat | ([Clearal]|

Besel

I~ Al System Modules

t

| Peport K

Figure 12-4: Profile Dialog

Getting Started with IDL

Debugging Tools in IDL

160 Chapter 12: Programming in IDL

Using IDL Projects

IDL Projects alow you to easily develop applicationsin IDL. You can manage,
compile, run, and create distributions of all the files you will need to develop your
IDL application. All of your application files can be organized so that they are easier
to access and easier to export to other devel opers, colleagues, or users.

HE

File Edt Search Aun Project Macros Window Help ————— —wioi
EBEHE OchmBe BE0)|

[Fe® sao B EENEER
=C T

€1 NoProject Open

Groups [Build Drder

wvelopment build of Thu Sep 9 23:47:48 MDT 1993 (Win32 x86). () 1939, Research Systems, Inc.

DL> ||

Fieady [I

Figure 12-5: Projects Window for Macintosh (upper right)
and Windows (upper left)

Access to all Files in Your Application

IDL Projects have an easy to use interface for grouping:
» IDL source code files (.pro)
* GUI files (.prc) created with the IDL GUIBuilder
» Datafiles (ASCII text or binary)
* Imagefiles (.tif, .jpg, .omp, etc.)

Using IDL Projects Getting Started with IDL

Chapter 12: Programming in IDL 161

» Other files (help files, .sav files, etc.)

After you add all of your filesto your project, you can simply double click on . pro
filesto opentheminthe DL editor or . pr c filesto open them in the IDL
GUIBuilder.

Working with Files in Your Project

IDL projects makesit easy to add, remove, move, edit, compile, and test filesin your
project.

All of your workspace information is saved aswell. If you save and exit your project
with the files you are working on open, when you open your project, those same files
will be opened automatically for you.

IDL projects a'so store breakpoint information. There is no need to reset breakpoints
every time you open the project.

Compiling and Running Your Application

Compiling and running applicationsis fast and easy. You can compile al of your
source files or just the files that you have modified and then run your application
through the Projects menu. You can customize how your application is compiled and
run by specifying options for your project.

Building Distributions

Once you have completed your application, you can quickly and easily create a
distribution. If you have purchased the IDL Developer’s Kit, your application is
automatically licensed for distribution.

Exporting Your Applications
You can easily move your application to another platform or distribute your source
code to colleagues by exporting your project. All your source code, GUI files, data

files, and image files are copied to a directory you specify. You also have the option
of creating an IDL Run Time distribution with your application.

Getting Started with IDL Using IDL Projects

162 Chapter 12: Programming in IDL

More Information on IDL Programming

For more information on programming in IDL, see the Building IDL Applications
manual. Also see the documentation for specific routinesin the IDL Reference Guide.

More Information on IDL Programming Getting Started with IDL

Chapter 13:

Manipulating Data

This chapter describes the following topics:

IDL and Manipulating Data. 164 Array Processing Capabilities 168
IDL Array Routines 165 More Information on Manipulating Data . 171

Getting Started with IDL 163

164 Chapter 13: Manipulating Data

IDL and Manipulating Data

IDL has been specifically designed to process arrays easily and naturally. You can get
excellent performance in your applications by using the built-in array processing
routinesinstead of other methods like FOR loops. This chapter will show how easy it
isto manipulate your data using IDL’s capabilities.

IDL and Manipulating Data Getting Started with IDL

Chapter 13: Manipulating Data

165

IDL Array Routines

The following tables describe some of the array processing procedures and functions
that areincluded in IDL.

Array Creation Routines

Array Name Array Function

BINDGEN Return abyte array with each element set to its subscript

BYTARR Create a byte vector or array

CINDGEN Returns complex array with each element set to its subscript

COMPLEXARR Returns complex, single-precision, floating-point vector or
array

DBLARR Return adouble-precision array

DCINDGEN Return adouble-precision, complex array with each element
set to its subscript

DCOMPLEXARR | Return adouble-precision, complex vector or array

DINDGEN Return adouble-precision array with each element set to its
subscript

FINDGEN Return afloating-point array with each element set to its
subscript

FLTARR Return afloating-point vector or array

IDENTITY Return an identity array

INDGEN Return an integer array with each element set to its subscript

INTARR Return an integer vector or array

LINDGEN Return alongword integer array with each element set to its
subscript

LONARR Return alongword integer vector or array

MAKE_ARRAY General purpose array creation

Getting Started with IDL

Table 13-1: Array Creation Routines

IDL Array Routines

166 Chapter 13: Manipulating Data

Array Name Array Function
OBJARR Create an array of object references
PTRARR Create an array of pointers
REPLICATE Form array of given dimensionsfilled with avaue
SINDGEN Return astring array with each element set to its subscript
STRARR Return a string vector or array

Table 13-1: Array Creation Routines

Array Manipulation Routines

Array Name Array Function
INVERT Computeinverse of asquare array
REFORM Change array dimensions without changing contents
REVERSE Reverse vectors or arrays
ROT Rotate array by any amount
ROTATE Rotate array by multiples of 90 degrees and/or transpose
SHIFT Shift array elements
SORT Sort array contents and return vector of indices
TRANSPOSE Transpose array

Table 13-2: Array Manipulation Routines

Array and Image Processing Routines

Array Name Array Function
CONGRID Resample image to any dimensions
INVERT Computeinverse of asquare array
MAX Return the maximum element of an array

Table 13-3: Array and Image Processing Routines

IDL Array Routines Getting Started with IDL

Chapter 13: Manipulating Data

167

Array Name Array Function
MEDIAN Median function and filter
MIN Return the minimum element of an array
REBIN Resample array by integer multiples
REFORM Change array dimensions without changing contents
REVERSE Reverse vectors or arrays
ROT Rotate array by any amount
ROTATE Rotate array by multiples of 90 degrees and/or transpose
SHIFT Shift array elements
SIZE Return array size and type information
SORT Sort array contents and return vector of indices
TOTAL Sum array elements
TRANSPOSE Transpose array
WHERE Return subscripts of non-zero array elements

Table 13-3: Array and Image Processing Routines

Getting Started with IDL

IDL Array Routines

168 Chapter 13: Manipulating Data

Array Processing Capabilities

Programs with array expressions run faster than programs with scalars, loops, and I F
statements. Some examples of slow and fast ways to achieve the same results follow.

Example— Avoiding IF Statements by Summing Elements

The first example adds all positive elements of array B to array A.
» Using aloop will be slow:
FOR 1=0, (N-1)DO IF B[I]GT 0 THEN A[I]=A[1] + B[I]
» Fast way: Mask out negative elements using array operations.
A=A + (B GT 0) * B
* Fasterway: AddB>0
A=A + (B > 0)
When an | F statement appearsin the middle of aloop with each element of an
array in the conditional, the loop can often be eliminated by using logica array
expressions.
Example— Avoiding IF Statements by Using Array Operators
and the WHERE Function

In the example below, each element of C is set to the square-root of A if A[l] is
positive; otherwise, C[I] is set to minus the square-root of the absolute value of A[l].

e Using an IF statement is slow.

FOR 1=0,(N-1) DOIF A[I] LE O THEN C[1]=-SQRT(-A[I]) ELSE
O 1] =SQRT(A[I])

* Fastway
C=((AGro) *2- 1) * SQRT(ABS(A))

The expression (A GTI' 0) hasthevalue 1if A[l] ispositive and has the value
Oif A[l]isnot. (A GT 0)* 2 - 1lisequal to+1if A[l] ispositiveor -1 if
A[l] is negative, accomplishing the desired result without resorting to loops or
| F statements.

Another method is to use the WHERE function to determine the subscripts of the
negative elements of A and negate the corresponding elements of the result.

» Get subscripts of negative elements.

Array Processing Capabilities Getting Started with IDL

Chapter 13: Manipulating Data 169

NEGS=WHERE(A LT 0)

» Takeroot of absolute value.
C = SQRT(ABS(A))

* Negate elementsin C corresponding to negative elementsin A.
C[negs] = -([negs]

Example— Using Vector and Array Operations

Whenever possible, vector and array data should always be processed with IDL array
operationsinstead of scalar operationsin aloop. For example, consider the problem
of flipping a512 x 512 image. This problem arises because approximately half the
available image display devices consider the origin to be the lower-l€eft corner of the
screen, while the other half recognize it as the upper-left corner.

Thefollowing exampleis for demonstration only. The IDL system variable | ORDER
should be used to control the origin of image devices. The ORDER keyword to the
TV procedure serves the same purpose.

A programmer without experience in using IDL might be tempted to write the
following nested loop structure to solve this problem:

FOR| =0, 511 DO FOR J = 0, 255 DO BEG N
» Temporarily save pixd:
TEMP=I MAGE[|, J]
» Exchange pixel in same column from corresponding row at bottom.

i mge[l, J] = imge[l, 511 - J]

i mge[l, 511-J] = tenp

ENDFOR
A more efficient approach to this problem capitalizes on IDL's ability to process arraysas
asingle entity.

* Enter at the IDL Command Line:
FOR J = 0, 255 DO BEG N
e Temporarily save current row.
tenp = image[*, J]
» Exchange row with corresponding row at bottom.

i mge[*, J] = imge[*, 511-7]
i mge[*, 511-J] = tenp
ENDFOR

Getting Started with IDL Array Processing Capabilities

170 Chapter 13: Manipulating Data

At the cost of using twice as much memory, processing can be simplified even further
by using the following statements:

» Get asecond array to hold inverted copy.
i mage2 = BYTARR(512, 512)
» Copy therows from the bottom up.
FOR J = 0, 511 DO inmage2[*, J] = image[*, 511-J]
» Even moreefficient isthe single line:
i mage2 = image[*, 511 - | NDGEN(512)]
that reverses the array using subscript ranges and array-val ued subscripts.
» Finaly, using the built-in ROTATE function is quickest of all:
i mage = ROTATE(i nage, 7)

This works because inverting the image is equiva ent to transposing it and
rotating it 270 degrees clockwise.

Note
Another way to invert the image isto enter:
i mge = REVERSE(i mage, 2)

Array Processing Capabilities Getting Started with IDL

Chapter 13: Manipulating Data 171

More Information on Manipulating Data

IDL has many more array processing capabilities than the ones shown in this chapter.
To take advantage of all of IDL’s powerful capabilitiesin manipulating data, ook for
more information in Building IDL Applications.

Getting Started with IDL More Information on Manipulating Data

172 Chapter 13: Manipulating Data

More Information on Manipulating Data Getting Started with IDL

Chapter 14:

Using the IDL
GUIBuilder

This chapter describes the following topics:

What isthe IDL GUIBuilder? 174 Widget Types, 187
IDL GUIBuilder Tools 176 More Information on the IDL GUIBuilder 189
Creating an Example Application 177

Getting Started with IDL 173

174 Chapter 14: Using the IDL GUIBuilder

What is the IDL GUIBuilder?

The IDL GUIBUuilder is part of the IDLDE for Windows. The IDL GUIBuilder
supplies you with away to interactively create user interfaces and then generate the
IDL source code that defines that interface and contains the event-handling routine
place holders.

Note
The DL GUIBuilder is supported on Windows only. However, the code it generates
is portable to other platforms and will run on the same version of IDL or higher.

The IDL GUIBuilder has several tools that simplify application development. These
toolsalow you to create the widgets that make up user interfaces, define the behavior
of those widgets, define menus, and create and edit color bitmaps for use in buttons.

Note
When using code generated by the IDL GUIBuilder on other non-Windows
platforms, more consistent results are obtained by using arow or column layout for
your bases instead of a bulletin board layout. By using arow or column layout,
problems caused by differencesin the default spacing and decorations (for example,
beveling) of widgets on each platform can be avoided

Using the IDL GUIBuilder

These are the basic steps you will follow when building an application interface using
the IDL GUIBuilder:

1. Interactively design and create a user interface using the components, or
widgets, supplied in the IDL GUIBUuilder. Widgets are simple graphical objects
supported by IDL, such as diders or buttons.

2. Set attribute properties for each widget. The attributes control the display,
initial state, and behavior of the widget.

3. Set event properties for each widget. Each widget has a set of eventsto which
it can respond. When you design and create an application, it is up to you to
decideif and how awidget will respond to the eventsit can generate. The first
step to having awidget respond to an event isto supply an event procedure
name for that event.

4. Savetheinterface design to an IDL resource file, *.prc file, and generate the
portable IDL source code files. There are two types of generated IDL source

What is the IDL GUIBuilder? Getting Started with IDL

Chapter 14: Using the IDL GUIBuilder 175

code: widget definition code (*. pr o files) and event-handling code
(*_event cb. pro files).

5. Modify the generated * _event cb. pr o event-handling code file using the
IDLDE, then compile and run the*. pr o code. This code can run on any IDL-
supported platform.

The* _event cb. pr o file contains place holders for al of the event procedures you
defined for the widgets, and you complete the file by filling in the necessary event
callback routines for each procedure.

Warning
Once you have generated the widget definition code (* . pr o files), you should not
modify thisfile manually. If you decide to change your interface definition, you will
need to regenerate the interface code, and will therefore overwritethat *. pr o file.
The event handling code will not be overwritten but will instead be appended.

Chapter 24, “Widgets’ in Building IDL Applications contains complete information
about IDL widgets, and it describes how to create user interfaces programmatically
(without the IDL GUIBuilder).

Getting Started with IDL What is the IDL GUIBuilder?

176 Chapter 14: Using the IDL GUIBuilder

IDL GUIBuilder Tools

You will use the following tools to design and construct a graphical interface using
the IDL GUIBuilder:

e ThelDL GUIBUilder Toolbar, which you use to create the widgets that make
up your interface.

» Widget Properties dialog, which you use to set widget attributes and event
properties.

» Widget Browser, which you can use to see the widget hierarchy and to modify
certain aspects of the widgetsin your application.

* The Menu Editor, which you use to define menus to top-level bases and
buttons.

* The Bitmap Editor, which you use to create or modify bitmap images to be
displayed on button widgets.

* TheIDLDE to modify, compile, and run the generated code.
Using the IDL GUIBuilder Toolbar

The IDL GUIBuilder hasits own toolbar in the IDE, which you use to create the
widgets for your user interface.

Base Button Radio Button

Select Cursor Checkbox Tree
& O|0|®[|abi| A] = |EH ED | & || ‘
Label Table \
Tab

Horizontal Slider ~ Verticdl Slider Droplist Listbox ~ Draw Area

Figure 14-1: IDL GUIBuilder Toolbar

IDL GUIBuilder Tools Getting Started with IDL

Chapter 14: Using the IDL GUIBuilder 177

Creating an Example Application

This simple example application contains a menu and adraw widget. When

compl ete, the running application allows the user to open and display a graphicsfile
in PNG format, change the color table for the image display, and perform a smooth
operation on the displayed image.

Now let's create awidget, set widget properties, and write IDL code to handle events:
Defining Menus for the Top-Level Base

To define the menu, follow these steps:

1. Openanew IDL GUIBuilder window by selecting File — New — GUI from
the IDLDE menu, or click the “New GUI” button on the IDLDE toolbar.

2. Drag out the window so that the top-level base to a reasonable size for
displaying an image.

To view the property values, right-click on the base, and choose Properties
from menu. In the Properties dialog, scroll down to view the X Sizeand Y
Size property values.

3. Right-click on the top-level basein the IDL GUIBuilder window, then choose
Edit Menu. This action opens the Menu Editor.

4. Inthe Editor’'s Menu Caption field, enter “File” and click Insert. Clicking
Insert sets the entered value and adds a new line after the currently selected
line, and the new line becomes the selected line.

5. To define the File menu items, do the following:

* With the new line selected, click on the right arrow in the Menu Editor,
which indents the line and makes it amenu item.

* Click inthe Menu Caption field and enter “Open”.

* Click inthe Event Procedurefield and enter “OpenFile”. The OpenFile
routine will be called when the user selects this menu.

» To create a separator after the Open menu, click the line button at the right
side of the diaog (above the arrow buttons).

e To set the values and move to anew line, click Insert.
* Inthe Menu Caption field, enter “Exit”.
* |Inthe Event Procedure field, enter “OnExit”.

Getting Started with IDL Creating an Example Application

178

Chapter 14: Using the IDL GUIBuilder

To set the values and move to anew ling, click Insert.

6. To define the Tools menu and its one item, do the following:

With the new line selected, click the left arrow to make the line atop-level
menul.

Inthe Menu Caption field, enter “Tools’, then click Insert.
Click theright arrow to make the new line a menu item.

In the Menu Caption field, enter “Load Color Table".

In the Event Procedure field, enter “OnColor”.

To set the values and move to anew line, click Insert.

7. To define the Analyze menu and its one menu item, do the following:

With the new line selected, click the left arrow to make the line atop-level
menu.

In the Menu Caption field, type“ Analyze”, then press Enter.
Click theright arrow to make the new line a menu item.

In the Menu Caption field, enter “Smooth”.

In the Event Procedure field, enter “DoSmooth”.

Menu Caption: |[FE Ok
Event Pracedure; I Cancel |
Name: [wi_MENLIL_O

IV Enabled

mm Jpen
-

=
. E it ﬂ
T-Dolioad Calor Table j
A-nalgzr:?ooth ﬂ

3

Delete | Inzert I

Figure 14-2: Menu Editor Dialog with Example Menus

Creating an Example Application Getting Started with IDL

Chapter 14: Using the IDL GUIBuilder 179

8. Save your menu definitions by clicking OK in the Menu Editor.
9. Atthistime you can click on the menus to test them.
10. From the IDLDE File menu, choose Save, which opens the “ Save As” dialog.

11. Inthe“Save As’ dialog, select alocation, enter “example.prc” in the File name
field, and click Save. This action writes the portable resource code to the
specified file.

To create adraw areathat will display PNG imagefiles, follow these steps:
1. Click onthe Draw Widget tool button (the dark square icon), then drag out an

areathat fills the top-level base display area. Leave a small margin around the
edge of the draw area when you drag it out.

2. Right click on the draw area, and choose Properties. This action opens the
Propertiesdiaog for the draw area; the draw widget properties are displayed
in the dialog.

3. InthePropertiesdiaog, click the push pin button (in the top right corner of
the dialog box) so the dialog will stay open and on top.

Note
This Properties diaog floats and is resizeable.

4. Inthe Propertiesdialog, change the draw widget Name attribute value to
13 Dra’\l” i

Getting Started with IDL Creating an Example Application

180

Chapter 14: Using the IDL GUIBuilder

|
EHIDL HIDL-WIN - Evaluation Purposes Only [_[O]x]

Fle Edt Seach Aun Project Macos Window Help

o) o=

BE=EE

AP s BEM

= e @

2p EENEER

=L

% B|2|®|=an] Al

AEEIE

€1 NoProject Open

IMDL53\example.pic™

E1IDE

File Tools Analyze

Properties - WID_DRAW._D =]

Atrbutes | Events|

Walue
WID_DRaw_0

Mame |
Hame

Groups | Build Order Color Model Index
Calors i
IDL Version <Development build of Sun Sep 19 £3:32:20 MDT 1999 (W | Component Sizing Explicit -
Frame False: =
Graphics Type | Direct =l
Fenderer OpenGL
Retain Mone ==
HName [Twe |
5] Locsis System, |4 | »
DL |
Create a new widget application INS | [[MNUM | v

Figure 14-3: Changing the Name attribute to “Draw”

Later, you will write code to handle the display of theimage in this draw area widget.
Renaming the widget now will make it easier to write the code later; the “Draw”
name s easy to remember and to type.

Note

The Name property must be unique to the widget hierarchy.

5.

Inthe IDL GUIBUilder window, click on the top-level base widget to select it.
When you do so,

the Properties dialog will update and display the attributes

for this base widget.

In the Properties dialog, locate the Component Sizing property, and select

Default from the droplist values. This action sizes the base to the draw widget

size you created.

Creating an Example Application

Getting Started with IDL

Chapter 14: Using the IDL GUIBuilder 181

When you first dragged out the size of the base, the Component Sizing
property changed from Default to Explicit—you explicitly sized the widget.
Now that the base widget contains items, you can return it to Default sizing,
and IDL will handle the sizing of this top-level base.

7. From the File menu, choose Save.
Running the Application in Test Mode

You can run the application in test mode, which allows you to test the display of
widgets and menus.
To run your application in test mode:

e From the Run menu, choose Test GUI.

This action displays the interface asit will look when it runs.

To exit test mode:

* Pressthe Esc key or Click the close X in the upper-right corner of the test
application window.

Generating the IDL Code

To generate the code for the example application, follow these steps:

1. From the File menu, choose Gener ate .pro. This action opens the “Save As’
dialog.

2. Inthe*Save As’ dialog, find the location where you want the files saved, enter
“example.pro” in the File namefield, and click Save.

This action generates an exanpl e. pr o widget definition file and an
exanpl e_event cb. pr o event-handling file.

Theexanpl e. pr o file contains the widget definition code, and you should never
modify thisfile. If you decide later to change your interface, you will need to
regenerate this interface code, and thus overwrite the widget code file.

Theexanpl e_event ch. pr o contains place holdersfor all the event proceduresyou
defined in the IDL GUIBuilder Menu Editor and Properties diaog. You must
complete these event procedures by filling in event callback routines. Thisfile will
only be appended to when new event handlers are added so changes made will not be
lost.

Getting Started with IDL Creating an Example Application

182 Chapter 14: Using the IDL GUIBuilder

Note
You should modify only the generated event-handling file (* _event cb. pro); you
should never modify the generated interface code (the *. pr o file).

Handling the Open File Event

You can now modify the generated exanpl e_event cb. pr o fileto handle the
events for the application. First, you will modify the OpenFile routine.

When the user selects Open from the File menu of the example application, the
appropriate event structure is sent, and the OpenFile routine handles the event. For
this application, the Open menu item will launch an Open dialog to allow the user to
choose a PNG file, and then the routine will check the selected file's type, read the
image, and display it in the draw area.

To open the file and add the code to handle the OpenFile event, follow these steps:

1. From the File menu in the IDLDE, choose Open, which launches the Open
dialog.

2. Inthe Open diaog, locate and select the exanpl e_event cb. pro file, and
click Open. Thisfile contains the event handling routine place holders, which
you will now complete.

3. Intheexanpl e_event cb. pr o file, locate the OpenFile procedure, which
looks like this:

pro OpenFile, Event

end

Tip
To easily find the OpenFile routine, select OpenFile from the Functions/Procedures
drop-down list on the IDLDE toolbar.

4. Add the following code between the PRO and END statements to handle the
event:

If there is a file, drawit to the draw wi dget.
sFile = DI ALOG Pl CKFI LE(FI LTER="*. png')
| F(sFile NE "")THEN BEG N
Find the draw wi dget, which is naned Draw.
wDraw = W DGET_I NFO(Event . top, FI ND_BY_UNAME='Draw);
Make sure somet hing was found.
| F(wDraw GT 0) THEN BEG N
Make the draw wi dget the current, active w ndow.

Creating an Example Application Getting Started with IDL

Chapter 14: Using the IDL GUIBuilder 183

W DGET_CONTROL, wDraw, GET_VALUE=i dDraw
WSBET, i dDr aw
Read in the image.
im= READ PNGsFile, r, g, b)
If TrueCol or i mage, quantize inage to pseudo-col or:
IF (SIZE(im /N.DIM EQ 3) THEN $
im= COLOR QUAN(im 1, r, g, b)
Size the image to fill the draw area.
im= CONGRID(im !D. X _SIZE, !D. Y_SIZE)
Handl e TrueCol or di spl ays:
DEVI CE, DECOMPOSED=0
Load color table, if one exists:
| F (N_ELEMENTS(r) GT 0) THEN TVLCT, r, g, b
Di spl ay the image.
TV, im
Save the image in the uvalue of the top-level base.
W DGET_CONTROL, Event.top, SET_WVALUE=im /NO_COPY
ENDI F
ENDI F

Note
In the added code, you used the FIND_BY _UNAME keyword to find the draw
widget using its name property. In this example, the widget name, “Draw”, isthe
oneyou gave thewidget in the IDL GUIBUuilder Properties dialog. The widget name
is case-sensitive.

Now re-save exanpl e. pr o to be sure that the changes are retained.
Handling the Exit Event
To add the code that causes the example application to close when the user chooses
Exit from the File menu, follow these steps:
1. Locatethe OnExit procedure place holder, which looks like this:

pro OnExit, Event

end

2. Add the following statement between the PRO and END statements to handle
the destruction of the application:

W DGET_CONTROL, Event.top, /DESTROY

Getting Started with IDL Creating an Example Application

184 Chapter 14: Using the IDL GUIBuilder

Handling the Load Color Table Event

To add the code that causes the example application to open the IDL color table
dialog when the user chooses L oad Color Table from the Tools menu, follow these

steps:
1. Locate the OnColor routine place holder, which looks like this:
pro OnCol or, Event

end

2. Add the following code between the PRO and END statements:

XLOADCT, /BLOCK
Find the draw wi dget, which is named Draw
wDr aw = W DGET_| NFOQ(Event . t op, FI ND_BY_UNAME=' Dr aw)
| F(wDraw GT 0) THEN BEG N
Make the draw widget the current, active w ndow.
W DGET_CONTROL, wDr aw, GET_VALUE=i dDr aw
WBET, i dDraw
W DGET_CONTROL, Event . top, CGET_UVALUE=i m /NO_COPY
Make sure the inage exists:
| F (N_ELEMENTS(im) NE 0) THEN BEG N
Di spl ay the image:
TV, im
Save the image in the uvalue of the top-level base:
W DGET_CONTROL, Event.top, SET_WVALUE=im /NO_COPY
ENDI F
ENDI F

This procedure opens a dialog from which the user can select from a set of predefined
color tables. When the user clicks the name of a color table, it isloaded and the
displayed image changes appropriately.

Note
The XLOADCT color table dialog affects only 8-bit display devices.

Handling the Smooth Event

When the user selects Smooth from the Analyze menu, a smooth operation is
performed on the displayed image. The smooth operation displays a smoothed image
with a boxcar average of the specified width, which in the example code is 5.

To add the callback routines to handle the smooth operation, follow these steps:

1. Locate the DoSmooth routine place holder, which looks like this:

Creating an Example Application Getting Started with IDL

Chapter 14: Using the IDL GUIBuilder 185

pro DoSnmoot h, Event

end

2. Add the following code between the PRO and END statements to handle the
smooth operation:

Get the image stored in the uvalue of the top-I|evel-base.
W DGET_CONTROL, Event.top, GET_UVALUE=i nage, / NO_COPY
Make sure the inage exists.
| F(N_ELEMENTS(i nage) GT 0) THEN BEG N
Snmoot h t he inmage.
i mge = SMOOTH(i mage, 5)
Di spl ay the snoot hed i nage.
TV, inmage
Pl ace the new inage in the uvalue of the button wi dget.
W DGET_CONTROL, Event.top, SET_UVALUE=i nage, /NO_COPY
ENDI F

3. From the File menu, choose Save, which saves all your changes to the
exanpl e_event cb. pro file.

Compiling and Running the Example Application

To compile and run your example application, follow these steps:

1. Typeexanpl e at the IDL> command prompt. This compiles and runs the
example application, opening the GUI interface that has been created.

2. Now open a PNG image to try out the new application. From the File menu
choose Open, locate a PNGfile, and click “Open”.

3. You will now see the image opened in your GUI window. To manipul ate the
color schemes, click Tools/L oad Color Table The following figure shows the
example application and the IDL color table dialog. You can also perform the
smooth procedure on the image.

Getting Started with IDL Creating an Example Application

186 Chapter 14: Using the IDL GUIBuilder

&lIDL
File Tools

Analyze

&l XLoadct

Done | Help |

@ Tables ¢ Options ¢ Function

]

‘ >
Stretch Bottom
100
Kl L]
Stretch Top
1.00000
Kl [o
Gamma Comection
RED-PURPLE -

GREENAWHITE LINEAR
GRNAWHT EXPONENTIAL |
GREEN-PINE

(BLLIE-HED

16 LEVEL

RAINBOW

STEPS A

Figure 14-4: The example GUI application

Creating an Example Application Getting Started with IDL

Chapter 14: Using the IDL GUIBuilder 187

Widget Types

Here is aquick description of the widget types you can create using the IDL
GUIBuilder toolbar:

Widget Description

Base Creates a container for a group of widgets within atop-level
base container (which is contained in the IDL GUIBUuilder
window).

Button Creates apush button. The easiest way to allow a user to interact
with your application is through a button click.

Radio Button Creates atoggle button that is always grouped within a base
container.

Checkbox Creates a checkbox, which you can use either as a single toggle
button to indicate a particular state ison or off or asalist of
choices from which the user can select noneto all choices.

Text Creates a text widget.

Label Creates alabel.

Horizontal and | Creates adider with ahorizontal or vertical layout.

Vertical Sliders

Droplist Creates a droplist widget, which you can use to present a
scrollablelist of items for the user to select from.

Listbox Creates a list widget, which you can use to present a scrollable
list of items for the user to select from.

Draw Area Creates a draw area, which you can use to display graphicsin
your application.

Table Creates a table widget, which you can useto display datain a
row and column format.

Tab Creates a tab widget on which different “pages’ (base widgets
and their children) can be displayed by selecting the appropriate
tab.

Getting Started with IDL

Table 14-1: Widget Types

Widget Types

188

Chapter 14: Using the IDL GUIBuilder

Widget Description
Tree Creates a tree widget, which presents a hierarchical view that
can be used to organize awide variety of data structures and
information.

Table 14-1: Widget Types

Note
The Select Cursor button returnsthe cursor to its standard state, and it indicates that
the cursor isin that state. After you click on another button and create the selected
widget, the cursor returns to the selection state.

Widget Properties

For each widget type, thereis a set of attribute values and a set of event values you
can set using the IDL GUIBuilder Properties dialog. When you select awidget in the
IDL GUIBuilder window or in the Widget Browser, the Properties dialog is updated
to contain the properties for the selected widget. These properties include those
common to all widgets and those specific to the selected widget.

On the Attributes tab of the Properties dialog (right click on the draw area, and
choose Properties. This action opens the Properties dialog for the draw area) the
attributes are set to default values and are arranged in the following order:

e The Name property.
* Anaphabetical list of common and widget-specific properties, combined.

On the Eventstab, the possible events for awidget are listed in a phabetical order,
with the common and the widget-specific events combined. By default, no event
values are set initially. When you enter a routine name for an event property, you are
responsible for making sure that event procedure exists. IDL does not validate the
existence of the specified routine.

Widget Types Getting Started with IDL

Chapter 14: Using the IDL GUIBuilder 189

More Information on the IDL GUIBuilder

For more information on the IDL GUIBuilder, seethe Building IDL Applications
manual .

Getting Started with IDL More Information on the IDL GUIBuilder

190 Chapter 14: Using the IDL GUIBuilder

More Information on the IDL GUIBuilder Getting Started with IDL

Chapter 15:

Where to Go
From Here

Using just afew examples, you' ve now gained a brief glimpse at the many and
powerful optionsthat IDL offersyou for data analysis, visualization, and cross-
platform application development. But the power of IDL has only begun and IDL
offers you many optionsto aid you in learning more and more about its incredible

functionality.

Getting Started with IDL 191

192 Chapter 15: Where to Go From Here

Learning More about IDL

A multitude of resources are made available to you to assist you as you learn the
many capabilities of IDL. IDL manuals are offered both printed and online (in PDF
version). IDL also includes an online help system directly accessible from the IDL
Development Environment.

IDL Documentation Set

If you have just purchased IDL, you will receive part of the documentation set
(depending upon which products you have purchased) in printed form with your
order. All IDL manuals are available in PDF form on your product CD-ROM. For
more information, see “Online Manuals’ on page 194.

Installing and Licensing IDL 5.6

Installing and Licensing IDL 5.6 describes how to install and license IDL on your
platform. It providesinformation about the different types of licensing available for
IDL and how to manage licensing on your system.

Using IDL

Using IDL explains IDL from an interactive user’s point of view. It contains
information about the IDL environment, the structure of IDL, and how to use IDL to
analyze and visualize your data.

Building IDL Applications

Building IDL Applications explains how to use the IDL language to write programs -
from simple procedures to large, complex applications. It contains information on the
structure of the IDL language, programming techniques, and tools you can use to
create applicationsin IDL.

Image Processing in IDL

Image Processing in IDL introduces you to the full image processing power of IDL,
describing how to display, manipulate, and extract information from images. This
manual features both Direct Graphics and Object Graphics examples that will aid in
developing IDL applications that require image processing.

Learning More about IDL Getting Started with IDL

Chapter 15: Where to Go From Here 193

IDL Quick Reference

The IDL Quick Reference provides quick access to the following: IDL procedures
and functions (categorized functionally and a phabetically), objects, executive
commands, and statements.

IDL Reference Guide

The IDL Reference Guide contains detailed information about all of IDL's
procedures, functions, objects, system variables, and other useful reference materials.
It also contains detailed information about IDL’s routines for dealing with Common
Data Format (CDF), Hierarchical Data Format (HDF), Earth Observing System
extensions to HDF (HDF-EOS), and Network Common Data Format (NetCDF) files.

External Development Guide

The External Devel opment Guide explains how to use IDL to develop applications
that interact with programs written in other programming languages.

Obsolete IDL Features

Obsolete IDL Features describes routines that have become obsol ete by
enhancementsto the IDL language. While these routines continue to exist, RSI
recommends that you do not use routines that have become obsolete in new code.

IDL Master Index

The Master Index is a combined and comprehensive index covering all manualsin
the IDL documentation set.

Note
Additional documentation can be ordered from Research Systems by contacting
RSI Sales at (303) 786-9900 or by visiting ww. Resear chSyst ens. com

IDL DataMiner Guide

The IDL DataMiner Guide contains information on using IDL to interact with
databases using the Open Database Connectivity (ODBC) interface.

Getting Started with IDL Learning More about IDL

http://www.ResearchSystems.com

194 Chapter 15: Where to Go From Here
Online Manuals

All volumes of the IDL documentation set are also available in Adobe Acrobat
Portable Document Format (PDF). These PDF files are automatically installed on
your machine with IDL. Remember that in order to view these manuals, you will
need a copy of Adobe’'s Acrobat Reader with Search software (version 3.0 or later). A
copy of Adobe Acrobat Reader is included on your product CD-ROM. For more
information on Adobe Acrobat Reader, visit their World Wide Web site at

www. adobe. com

How to Access IDL Online Manuals

To access the IDL online manuals after you have installed IDL:

On Windows, select Start — Programs - Research Systems|IDL 5.6 -
IDL Online Manuals & Tutorials.

On UNIX and Mac OS X, execute the following at the prompt:
i dl man

The IDL online manuals can also be found inthei nf o directory of your product CD-
ROM.

Navigation of the IDL Online Manuals

The online IDL manuals are fully hypertext linked for easy navigation. An Online
Guide (onlguide.pdf) fileis aso included which is your guide to the IDL
documentation set. It has links for all manualsin the documentation set as well as
links on how to get more information from Research Systems.

Searching within the Online Manual Set

The IDL online manuals are set up to search for any information you might need
within the IDL manual set. To search the IDL manual set, you can click on the
binocular/page button in the Acrobat Reader tool bar after you have opened any IDL
manual in the set including the Online Guide.

Learning More about IDL Getting Started with IDL

Chapter 15: Where to Go From Here 195

Online Help

IDL is equipped with extensive on-line help facilities that provide two kinds of
information: documentation of IDL procedures, functions, and keywords, and
information on the status of the IDL environment. There are several ways to access
these help facilities from within the IDL Development Environment.

The IDL Development Environment Help Menu

Oneway isto start Help by selecting “ Contents” from the “Help” pull-down menu in
the IDL Development Environment. You can also search using the “Find Topic”
selection on the same menu.

The Question Mark

You can access the IDL Help by entering a question mark (?) at the IDL prompt. The
IDL Online Help window appears. The most current documentation on any aspect of
IDL isavailable through this command. Although the help window has buttons for

performing searches, you can a so perform akeyword search from the command line
by entering “?" followed by akeyword for which you want to search. For example, to
search for topics related to contouring when starting the help system, you could enter:

? CONTOUR
IDL Help Outside of the IDL Development Environment

You may also access the IDL Help system outside of the IDL Devel opment
Environment.

On UNIX and Mac OS X, execute the following at the prompt:
i dl hel p

HELP Command

The HEL P procedure gives information about the IDL session. Enter:
HELP

with no additional parametersto display an overview of the current IDL session
including one-line descriptions of all variables and the names of all compiled
procedures and functions. Enter:

HELP, vari able

to display information about that variable'stype. Many keyword parameters can be
used with the HEL P procedure to retrieve more specific information.

Getting Started with IDL Learning More about IDL

196 Chapter 15: Where to Go From Here

IDL Demo Applications and Examples

The DL Demo Applicationsillustrate some of the many ways|DL can help visuaize
data. The IDL Demo Applications are a series of programs written in the IDL
language that demongtrate different aspects of IDL. To Start the Demo Applications,
compl ete the following steps:

For Windows, by clicking the Windows Start button and selecting Start —
Programs - Research Systems|DL 5.6 — IDL Demo.

For UNIX and Mac OS X, enter the following at the UNIX prompt:
i dl dermp

Note
If you have already started IDL, you can simply typein DEMO at the IDL prompt.

| DL> DEMO

Another way to access the IDL Demo System is to use the “Run Demo” toolbar
button on the IDLDE toolbar. To use this feature simply click the button and the
dialog for running the demo will appear.

IDL aso comes with many built-in examples such as source code and example data
files. These can befound in the RSI - DI R/ exanpl es where RSI - DI Risthe
directory in which you haveinstalled IDL.

IDL Demo Applications and Examples Getting Started with IDL

Chapter 15: Where to Go From Here 197

Contacting RSI

Address
Research Systems, Inc.
4990 Pearl| East Circle
Boulder, CO 80301
Phone
(303) 786-9900
(303) 413-3920 (Technical support)
Fax
(303) 786-9909
E-mail

Salesinquiries: i nf o@esear chSyst ens. com
Technical support: support @esear chSyst ens. com
Training information: t r ai ni ng@Resear chSyst ens. com

World Wide Web

Visit Research Systems’ web site at: Visit Research Systems’ web site at
www. RSI nc. com

Getting Started with IDL Contacting RSI

http://www.RSInc.com
mailto:info@ResearchSystems.com
mailto:support@ResearchSystems.com
mailto:training@ResearchSystems.com

198 Chapter 15: Where to Go From Here

Contacting RSI Getting Started with IDL

Index

Symbols maps, 117
. . axes

$, contmuatl on character, 144 turning off, 146

&, multiple command character, 144 azimuthal equidistant map projection, 116

Numerics B

2D p|0t, 51 base Widgets
using, 187

A button widgets
using, 187

abbreviating keywords, 115 byte scaling, 64, 89

Adobe Acrobat Portable Document Format

(PDF), 194
animation C
wire mesh surface, 143 checkboxes
annotating usi ng, 187

Getting Started with IDL 199

200

code E
IDL GUIBuilder generated, 181 .
modifying generated, 182 efficiency .
color tables vector and array operations, 169
example, 184 elevation levels. contours, 92
loading, 88 events .
colors handling in IDL GUIBuilder code, 182

byte scaling, 89
contrast enhancement, 68

filling contours, 93 F
scaling, 64 files
Command Input Line IDL GUIBuUilder
IDLDE for Motif, 18 generated, 181
Contents button, 195 modifying generated, 182
contours, 91 reading image data, 63
filling, 93 filling contours, 93
levels, 92 filtering
3D perspective, 94 frequency domain, 55
tickmarks, 93 filtering techniques, 55
contrast enhancement, 68 Fourier transform filtering, 55
creating data, 51, 85 frequency domain filtering, 55
customizing routines, 96
G
D :
globe, drawing, 115
data graphics
irregularly-gridded, 130 window resizing, 67
data sets windows, dismissing, 64
creating, 51 gridding
plotting, 44 latitude and longitude lines, 115
datasets quintic, 135
creating, 51, 85, 131
differentiated smoothing, 76
dismissing windows, 64 H
draw widgets
example application using, 179 helponIDL, 195
using, 187
drawing latitude and longitude lines, 115 /
droplist widgets
using, 187 IDL

Code Profiler, 159

Index Getting Started with IDL

getting help, 195

IDL Development Environment
Layout, 17

IDL GUIBuilder
base widgets, using, 187
button widgets, using, 187
checkbox widgets, using, 187
color table example, 184

compiling and running example, 185
creating draw area, example, 179

defining menus, example, 177
draw widgets, using, 187
droplists, using, 187
generating code, 181
horizontal slider, using, 187
label widgets, using, 187
listbox widgets, using, 187
modifying code, example, 182
radio button widgets, using, 187
smooth example, 184

starting, 177

table widgets, using, 187

test mode, 181

text widgets, using, 187
toolbar, 176

tools, 176

vertical slider, using, 187

writing event-handling code, 182

images
contrast enhancement, 68
displaying, 64, 64
opening, 63
reading, 63, 63
rotating, 79
sharpening, 74
smoothing, 74
input and output, 24
interpolation
linear, 135
quintic, 135
irregularly-gridded data, 130

Getting Started with IDL

iso-surfaces, 10

K

keywords
abbreviating, 115

L

label widgets
using, 187
latitude lines, 115
levels, contour, 92
lines
drawing latitude and longitude, 115
horizon, 115
listbox widgets
using, 187
LIVE PLOT
using, 46
LIVE_PLOT procedure, 46
longitude lines, 115

M

mapping, 112
annotations, 117
grid of latitude and longitude lines, 115
horizon line, 115
limiting region mapped, 116
projection
azimuthal equidistant, 116
orthographic, 115
multiple plot displays, 58

(@)

opening
image files, 63

201

Index

202

orthographic map projection, 115
Output Log

IDLDE for Motif, 19
overplotting, 93

P

PDF files, 194
performance
analyzing, 159
pixel
brightness praofile, 80
pixels
scaling, 71
plotting
annotating maps, 117
contours, 91
displaying multiple plots, 58
irregularly-gridded data, 130
other capabilities, 45
overplotting, 93
simple, 41
surfaces, 84, 86, 152
symbols, 132
text size, 88
titles, 54, 88
plotting with data sets, 44
printing aplot, 43
profiling, 159
projections, map
azimuthal equidistant, 116
orthographic, 115
projects
overview, 18, 160

Q

quintic interpolation, 135
quitting IDL, 20

Index

R

radio button widgets
using, 187
reading
images, 63
reading binary data, 31
reading images, 36
real-world test data, 52
resizing
graphics windows, 67
rotating
images, 79
routines
customizing, 96

S

saving atemplate, 35
scaling pixels, 71
scientific data formats, 25
sharpening images, 74
signal processing

and IDL, 50
SIN function, 51
sinewave function, 51
slices

making, 106
slider widgets

using, 187
smoothing

example, 184
smoothing images, 74
standard

image file formats, 25
Status Bar

IDLDE for Motif, 19
surfaces

constant-density, 10

displaying, 108

iso-surfaces, 10

Getting Started with IDL

plotting, 84, 86, 152
wire mesh animation, 143

T

table widgets
using, 187
test data, 52

test mode, IDL GUIBuilder, 181

text
size, 88
text widgets
using, 187
three-dimensional
contour plot, 94
surfaces, 86
thresholding, 68
toolbars
IDL GUIBUilder, 176
IDLDE for Windows, 17
tutorials, 12

U
unsharp masking, 75

Getting Started with IDL

%4

Variable Watch Window, 158
variables

displaying current, 158

w

widgets

bases, using, 187
buttons, using, 187
checkboxes, using, 187

creatingin IDL GUIBuilder, 176

draw, using, 187
droplists, using, 187
labels, using, 187
listbox, using, 187
radio buttons, using, 187
slider, using, 187
table, using, 187
text, using, 187
windows
deleting, 148
dismissing, 64
resizing, 67
wire mesh surface
animation, 143
writing binary data, 31
writing images, 36

203

Index

	Online Manuals
	Online Guide
	IDL Documentation
	What's New in IDL 5.6
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Building IDL Applications
	Image Processing in IDL
	IDL Quick Reference
	IDL Reference Guide
	External Development Guide
	Obsolete IDL Features
	Master Index of IDL Docs

	IDL DataMiner Documentation
	IDL DataMiner Guide
	DataDirect Connect ODBC Reference (3.11 for IRIX and Mac)
	DataDirect Connect ODBC Reference (3.7 for other platforms)

	IDL Wavelet Documentation
	IDL Wavelet Toolkit User's Guide

	ION Documentation
	Introduction to ION
	ION Script User's Guide
	ION Script Quick Reference
	ION Java User's Guide

	Search Documentation

	Getting Started with IDL: Contents
	The Power of IDL
	Using this Manual

	The IDL Development Environment
	IDL’s Development Environment
	Starting IDL
	The IDL Interfaces
	The IDL Development Environment Layout
	Menu Bar
	Tool Bar
	Project Window
	Multiple Document Panel
	Command Line
	Output Log
	Variable Watch Window
	Status Bar

	Quitting IDL
	More Information on the IDLDE

	Reading and �Writing Data
	IDL and Reading and Writing Data
	IDL Supported Formats
	Image Formats
	Scientific Data Formats
	Other Formats

	Importing Data from an ASCII File
	Reading and Writing Binary Data
	Saving a Template
	Reading and Writing Images
	More Information on IDL and Input/Output

	2-D Plotting
	IDL and 2-D Plotting
	Simple Plotting
	Using OPLOT
	Printing a Plot

	Plotting with Data Sets
	Other Plotting Capabilities
	Using LIVE_PLOT
	More Information on 2-D Plotting

	Signal Processing
	IDL and Signal Processing
	Creating a Data Set
	Signal Processing with SMOOTH
	Frequency Domain Filtering
	Displaying the Results
	More Information on Signal Processing

	Image Processing
	IDL and Image Processing
	Reading an Image
	Displaying an Image
	Resizing an Image
	Resizing a Graphics Window
	Contrast Enhancement
	Thresholding
	Scaling Pixel Values

	Smoothing and Sharpening
	Unsharp Masking
	Sharpening Images with Differentiation
	Loading Different Color Tables

	Other Image Manipulations
	Rotating an Image

	Extracting Profiles
	Using LIVE_IMAGE
	More Information on Image Processing

	Surface and Contour Plotting
	IDL and Surface and Contour Plotting
	Reading a Dataset to Plot
	Displaying a Surface
	Displaying a Shaded Surface
	Displaying a Contour
	Plotting with SHOW3
	Using LIVE_SURFACE for Plotting
	More Information on 3-D Plotting

	Volume Visualization
	IDL and Volume Visualization
	Reading in a Dataset for Visualization
	3-D Transformations
	Visualizing an Iso-Surface
	Making Slices with the IDL Slicer
	Displaying a Surface with the Slicer
	Dismiss the Slicer and Volume Windows

	More Information on Volume Visualization

	Mapping
	IDL and Mapping
	Drawing Map Projections
	Drawing an Orthographic Projection
	Plotting a Portion of the Globe
	Plotting Data on Maps
	Reading Latitudes and Longitudes
	Plotting Contours Over Maps
	Warping Images to Maps
	More Information on Mapping

	Plotting Irregularly- Gridded Data
	IDL and Plotting Irregularly-Gridded Data
	Creating a Dataset
	The TRIANGULATE Procedure
	Plotting the Results with TRIGRID
	More Information on Gridding

	Animation
	IDL and Animation
	Animating a Series of Images
	Displaying an Animation as a Wire Mesh
	Animation with XINTERANIMATE
	Cleaning Up the Animation Windows
	More Information on Animation

	Programming in IDL
	IDL and Programming
	Programming Capabilities in the IDLDE
	Built-In Editor
	Chromacoded editor

	Types of IDL Programs
	Main Program
	Procedure
	Function

	Compound Statements
	Conditional Statements
	Loop Statements
	Jump Statements

	Executing a Simple IDL Example Program
	Saving, Compiling and Running your Program

	Debugging Tools in IDL
	Breakpoints
	Variable Watch window
	The IDL Code Profiler

	Using IDL Projects
	Access to all Files in Your Application
	Working with Files in Your Project
	Compiling and Running Your Application
	Building Distributions
	Exporting Your Applications

	More Information on IDL Programming

	Manipulating Data
	IDL and Manipulating Data
	IDL Array Routines
	Array Creation Routines
	Array Manipulation Routines
	Array and Image Processing Routines

	Array Processing Capabilities
	Example— Avoiding IF Statements by Summing Elements
	Example— Avoiding IF Statements by Using Array Operators and the WHERE Function
	Example— Using Vector and Array Operations

	More Information on Manipulating Data

	Using the IDL GUIBuilder
	What is the IDL GUIBuilder?
	Using the IDL GUIBuilder

	IDL GUIBuilder Tools
	Using the IDL GUIBuilder Toolbar

	Creating an Example Application
	Defining Menus for the Top-Level Base
	Running the Application in Test Mode
	Generating the IDL Code
	Handling the Open File Event
	Handling the Exit Event
	Handling the Load Color Table Event
	Handling the Smooth Event
	Compiling and Running the Example Application

	Widget Types
	Widget Properties

	More Information on the IDL GUIBuilder

	Where to Go From�Here
	Learning More about IDL
	IDL Documentation Set
	Installing and Licensing IDL 5.6
	Using IDL
	Building IDL Applications
	Image Processing in IDL
	IDL Quick Reference
	IDL Reference Guide
	External Development Guide
	Obsolete IDL Features
	IDL Master Index
	IDL DataMiner Guide

	Online Manuals
	How to Access IDL Online Manuals
	Navigation of the IDL Online Manuals
	Searching within the Online Manual Set

	Online Help
	The IDL Development Environment Help Menu
	The Question Mark
	IDL Help Outside of the IDL Development Environment
	HELP Command

	IDL Demo Applications and Examples
	Contacting RSI
	Address
	Phone
	Fax
	E-mail
	World Wide Web

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W

